This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375159 #9 Aug 01 2024 23:16:50 %S A375159 1,-1,1,0,1,0,0,-1,2,0,0,-1,2,0,1,0,-1,0,1,-1,2,-1,1,0,3,-1,-1,0,0,0, %T A375159 1,-1,2,0,0,1,0,-1,1,0,2,-1,1,-1,2,-1,-1,0,2,0,1,-1,0,0,1,-1,1,1,2,0, %U A375159 2,-2,0,0,-1,0,-1,0,3,0,0,-1,3,-1,1,0,0,0,1,-1,2,0,0,-1,2,0,-1,0,0,0,2,-2,2,0,2,0,-1,-1,1,0,0 %N A375159 Expansion of Sum_{k in Z} x^(4*k) / (1 - x^(7*k+2)). %F A375159 G.f.: Product_{k>0} (1-x^(7*k))^3 * ((1-x^(7*k-1)) * (1-x^(7*k-6)))^2 / (1-x^k). %F A375159 G.f.: Sum_{k in Z} x^(2*k) / (1 - x^(7*k+4)). %o A375159 (PARI) my(N=110, x='x+O('x^N)); Vec(sum(k=-N, N, x^(4*k)/(1-x^(7*k+2)))) %o A375159 (PARI) my(N=110, x='x+O('x^N)); Vec(prod(k=1, N, (1-x^(7*k))^3*((1-x^(7*k-1))*(1-x^(7*k-6)))^2/(1-x^k))) %Y A375159 Cf. A375107, A375148, A375158. %Y A375159 Cf. A375149. %K A375159 sign %O A375159 0,9 %A A375159 _Seiichi Manyama_, Aug 01 2024