This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375166 #20 Jun 05 2025 20:21:16 %S A375166 7,10,13,18,19,22,27,28,31,34,37,40,43,45,46,52,54,55,58,61,63,67,70, %T A375166 72,73,76,79,82,85,88,90,91,94,97,99,103,106,108,109,112,115,117,118, %U A375166 124,126,127,130,133,135,136,139,142,145,148,151,153,154,157,160,162 %N A375166 Nonsquares congruent to {0, 1, 4, 7} modulo 9. %C A375166 Squares are congruent to {0, 1, 4, 7} modulo 9, but the reverse is not always true since there are nonsquares that have the same congruence property. See Beiler. %D A375166 Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 140. %t A375166 Select[Range[0,162], !IntegerQ[Sqrt[#]] && MemberQ[{0,1,4,7}, Mod[#,9]] &] %o A375166 (Python) %o A375166 from itertools import count, islice %o A375166 from sympy.ntheory.primetest import is_square %o A375166 def A375166_gen(): # generator of terms %o A375166 for i in count(0,9): %o A375166 for j in (0,1,4,7): %o A375166 if not is_square(i+j): yield i+j %o A375166 A375166_list = list(islice(A375166_gen(),40)) # _Chai Wah Wu_, Jun 05 2025 %Y A375166 Intersection of A000037 and A056991. %Y A375166 Cf. A000290, A056992, A070433. %K A375166 nonn,easy %O A375166 1,1 %A A375166 _Stefano Spezia_, Aug 05 2024