cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375166 Nonsquares congruent to {0, 1, 4, 7} modulo 9.

This page as a plain text file.
%I A375166 #20 Jun 05 2025 20:21:16
%S A375166 7,10,13,18,19,22,27,28,31,34,37,40,43,45,46,52,54,55,58,61,63,67,70,
%T A375166 72,73,76,79,82,85,88,90,91,94,97,99,103,106,108,109,112,115,117,118,
%U A375166 124,126,127,130,133,135,136,139,142,145,148,151,153,154,157,160,162
%N A375166 Nonsquares congruent to {0, 1, 4, 7} modulo 9.
%C A375166 Squares are congruent to {0, 1, 4, 7} modulo 9, but the reverse is not always true since there are nonsquares that have the same congruence property. See Beiler.
%D A375166 Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 140.
%t A375166 Select[Range[0,162], !IntegerQ[Sqrt[#]] && MemberQ[{0,1,4,7}, Mod[#,9]] &]
%o A375166 (Python)
%o A375166 from itertools import count, islice
%o A375166 from sympy.ntheory.primetest import is_square
%o A375166 def A375166_gen(): # generator of terms
%o A375166     for i in count(0,9):
%o A375166         for j in (0,1,4,7):
%o A375166             if not is_square(i+j): yield i+j
%o A375166 A375166_list = list(islice(A375166_gen(),40)) # _Chai Wah Wu_, Jun 05 2025
%Y A375166 Intersection of A000037 and A056991.
%Y A375166 Cf. A000290, A056992, A070433.
%K A375166 nonn,easy
%O A375166 1,1
%A A375166 _Stefano Spezia_, Aug 05 2024