A375234 Square array T(n,k), n>1 and k>1, read by antidiagonals in ascending order, giving the smallest n*k-digit number that, if arranged in an n X k matrix, forms a k-digit emirp (A006567) in each row and an n-digit emirp in each column, or -1 if no such number exists.
1331, 131337, 113337, 13139731, 113113337, 11933371, 1313717979, 113149971311, 119314713911, 1119737379, 131313131397, 113107709179991, 1193100990013911, 111971414339313, 111119333337
Offset: 2
Examples
T(3,2) = 131337 is the smallest 3*2-digit that if arranged in a 3 X 2 matrix yields in each row and column an emirp, i.e., 13 13 37 -> 13 (2 times), 37 (1 times), 113 (1 time), 337 (1 time) are all emirps. Table begins (upper left corner = T(2,2)): 1331 113337 11933371 ... 131337 113113337 119314713911 ... 13139731 113149971311 1193100990013911 ... ... ... ... ...