cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375176 Expansion of e.g.f. exp( (exp( (exp(9*x) - 1)/3 ) - 1)/3 ).

This page as a plain text file.
%I A375176 #11 Feb 16 2025 08:34:07
%S A375176 1,1,13,208,4132,99328,2799073,90310006,3281661436,132615087517,
%T A375176 5897867191525,286140731152972,15031839986716483,849637058684740030,
%U A375176 51389339196926149645,3310400979718767433801,226189040323182011660827,16333609964679285918346633
%N A375176 Expansion of e.g.f. exp( (exp( (exp(9*x) - 1)/3 ) - 1)/3 ).
%H A375176 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BellPolynomial.html">Bell Polynomial</a>.
%F A375176 a(n) = Sum_{k=0..n} 9^(n-k) * Stirling2(n,k) * A004212(k) = 9^n * Sum_{k=0..n} (1/3)^k * Stirling2(n,k) * Bell_k(1/3), where Bell_n(x) is n-th Bell polynomial.
%o A375176 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp((exp((exp(9*x)-1)/3)-1)/3)))
%Y A375176 Cf. A374882, A375174.
%Y A375176 Cf. A004212.
%K A375176 nonn
%O A375176 0,3
%A A375176 _Seiichi Manyama_, Aug 02 2024