This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375188 #14 Aug 04 2024 01:25:20 %S A375188 0,0,0,0,1,1,2,2,6,10,22,22,32,32,68,92,124,124,172,172,284,296,596, %T A375188 596,848,1136,2288,2680,4352,4352,5344,5344,6128,6140,13040,16304, %U A375188 19424,19424,38864,43184,47984,47984,63992,63992,100784,133024,278656,278656,331520 %N A375188 Number of non-unitary square divisors of n!. %H A375188 Amiram Eldar, <a href="/A375188/b375188.txt">Table of n, a(n) for n = 0..1000</a> %F A375188 a(n) = A056626(n!). %t A375188 f1[p_, e_] := 1 + Floor[e/2]; f2[p_, e_] := 2^(1 - Mod[e, 2]); a[0] = a[1] = 0; a[n_] := Times @@ f1 @@@ (fct = FactorInteger[n!]) - Times @@ f2 @@@ fct; Array[a, 60, 0] %o A375188 (PARI) a(n) = {my(e = factor(n!)[,2]); vecprod(apply(x -> x\2 + 1, e)) - vecprod(apply(x -> 1 << (1 - x%2), e));} %o A375188 (Python) %o A375188 from math import prod %o A375188 from collections import Counter %o A375188 from sympy import factorint %o A375188 def A375188(n): %o A375188 f = sum((Counter(factorint(m)) for m in range(2,n+1)),start=Counter()).values() %o A375188 return prod((e>>1)+1 for e in f)-(1<<sum(e&1^1 for e in f)) # _Chai Wah Wu_, Aug 04 2024 %Y A375188 Cf. A000142, A056626, A375187. %K A375188 nonn,easy %O A375188 0,7 %A A375188 _Amiram Eldar_, Aug 03 2024