This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375203 #19 Oct 18 2024 11:25:02 %S A375203 0,3,12,43,48,142,172,192,427,568,688,768,1708,2272,2752,3072,6832, %T A375203 9088,11008,12288,27328,36352,44032,49152,109312,145408,176128,196608, %U A375203 437248,581632,704512,786432,1748992,2326528,2818048,3145728,6995968,9306112,11272192 %N A375203 Positions of records in A375202. %C A375203 Numbers k such that the A375202(k) > A375202(j) for all j < k. %H A375203 Chai Wah Wu, <a href="/A375203/b375203.txt">Table of n, a(n) for n = 1..52</a> %H A375203 Mathematics StackExchange, <a href="https://math.stackexchange.com/questions/4985056/large-smallest-square-in-a-sum-of-three-squares#4985056">Large smallest square in a sum of three squares?</a> %F A375203 A375202(a(n)) = A375204(n). %e A375203 a(3) = 12 is a term because A375202(12) = 2 and A375202(j) <= 1 for j < 12. %p A375203 f:= proc(n) local q,x,y,z; %p A375203 if n/4^padic:-ordp(n,4) mod 8 = 7 then return -1 fi; %p A375203 for x from 0 while 3*x^2 <= n do %p A375203 if [isolve(y^2 + z^2 = n - x^2)] <> [] then return x fi %p A375203 od; %p A375203 end proc: %p A375203 R:= NULL:count:= 0: m:= -1; %p A375203 for i from 0 while count < 39 do %p A375203 v:= f(i); %p A375203 if v > m then %p A375203 R:= R,i; m:= v; count:=count+1 %p A375203 fi %p A375203 od: %p A375203 R; %o A375203 (Python) %o A375203 from itertools import count, islice %o A375203 from math import isqrt %o A375203 from sympy import factorint %o A375203 def A375203_gen(): # generator of terms %o A375203 c = -1 %o A375203 for n in count(0): %o A375203 v = (~n & n-1).bit_length() %o A375203 if v&1 or n>>v&7!=7: %o A375203 a = next(x for x in range(isqrt(n//3)+1) if not any(e&1 and p&3==3 for p, e in factorint(n-x**2).items())) %o A375203 if a>c: %o A375203 yield n %o A375203 c = a %o A375203 A375203_list = list(islice(A375203_gen(),20)) # _Chai Wah Wu_, Oct 16 2024 %Y A375203 Cf. A375202, A375204. %K A375203 nonn %O A375203 1,2 %A A375203 _Robert Israel_, Oct 15 2024 %E A375203 a(35)-a(39) from _Chai Wah Wu_, Oct 16 2024