cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375214 Odd numbers with equal numbers of even and odd digits.

This page as a plain text file.
%I A375214 #16 Sep 13 2024 07:41:04
%S A375214 21,23,25,27,29,41,43,45,47,49,61,63,65,67,69,81,83,85,87,89,1001,
%T A375214 1003,1005,1007,1009,1021,1023,1025,1027,1029,1041,1043,1045,1047,
%U A375214 1049,1061,1063,1065,1067,1069,1081,1083,1085,1087,1089,1201,1203,1205,1207,1209,1221,1223,1225
%N A375214 Odd numbers with equal numbers of even and odd digits.
%C A375214 Numbers with an odd length cannot be in this sequence.
%H A375214 Jake L Lande, <a href="/A375214/b375214.txt">Table of n, a(n) for n = 1..1000</a>
%e A375214 1001 is odd and has two even digits (0,0) and two odd digits (1,1).
%p A375214 filter:= proc(n) local L;
%p A375214   L:= convert(n,base,10);
%p A375214   nops(select(type,L,even))=nops(L)/2
%p A375214 end proc:
%p A375214 select(filter, [seq(seq(i,i=10^(d-1)+1 .. 10^d, 2),d=2..4,2)]); # _Robert Israel_, Aug 07 2024
%t A375214 eeo[n_] := (id = IntegerDigits[n]; Count[EvenQ@id, True] == Count[OddQ@id, True]); Select[Select[Range[1225], eeo], Mod[#, 2] == 1 &]
%Y A375214 Subsequence of A227870.
%Y A375214 Complement of A375213 within A227870.
%K A375214 nonn,base,easy
%O A375214 1,1
%A A375214 _Jake L Lande_, Aug 07 2024