cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375223 a(n) is the number of permutations of the multiset 1,1, 2,2, ..., n,n such that at least one pair k,k stays at its initial locations 2k-1, 2k.

This page as a plain text file.
%I A375223 #17 Aug 05 2024 23:35:43
%S A375223 1,1,16,327,11756,644315,50094570,5245258879,711662648968,
%T A375223 121448713262139,25460198594647070,6431844723440756015,
%U A375223 1927058631207405670716,675631849624828664480107,274032655042818911590547266,127312224468011793400981895295,67167619760422081463964260973200
%N A375223 a(n) is the number of permutations of the multiset 1,1, 2,2, ..., n,n such that at least one pair k,k stays at its initial locations 2k-1, 2k.
%H A375223 Alois P. Heinz, <a href="/A375223/b375223.txt">Table of n, a(n) for n = 1..239</a>
%F A375223 a(n) = Sum_{j=1..n} binomial(n,j) * A374980(n-j). - _Alois P. Heinz_, Aug 05 2024
%e A375223 a(3) = 16: The 15 permutations with one stable pair (see A375222) and the starting configuration [1, 1, 2, 2, 3, 3].
%o A375223 (PARI) a375223(n) = {my (p=vector(2*n,i,1+(i-1)\2), m=0); forperm (p, q, for (j=1, n, if (q[2*j-1]==j && q[2*j]==j, m++; break))); m}
%Y A375223 Cf. A000680 (all permutations of this multiset), A375222 (exactly one stable pair), A374980.
%K A375223 nonn
%O A375223 1,3
%A A375223 _Hugo Pfoertner_, Aug 05 2024
%E A375223 a(8) onwards from _Alois P. Heinz_, Aug 05 2024