A382967 Biquadratefree numbers (A046100) that are not squarefree (A005117).
4, 8, 9, 12, 18, 20, 24, 25, 27, 28, 36, 40, 44, 45, 49, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 84, 88, 90, 92, 98, 99, 100, 104, 108, 116, 117, 120, 121, 124, 125, 126, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 164, 168, 169, 171, 172, 175, 180, 184
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Range[200], 2 <= Max[FactorInteger[#][[;; , 2]]] <= 3 &]
-
PARI
isok(k) = if(k == 1, 0, my(emax = vecmax(factor(k)[, 2])); emax > 1 & emax < 4);
-
Python
from math import isqrt from sympy import mobius, integer_nthroot def A382967(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x+sum(mobius(k)*(x//k**2-x//k**4) for k in range(1, integer_nthroot(x,4)[0]+1))+sum(mobius(k)*(x//k**2) for k in range(integer_nthroot(x,4)[0]+1,isqrt(x)+1))) return bisection(f,n,n) # Chai Wah Wu, Apr 11 2025
Formula
Sum_{k=1..n} a(k) ~ Pi^4 * n^2 / (12*(15 - Pi^2)). - Vaclav Kotesovec, Apr 11 2025
Comments