cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375230 The total number of infinitary divisors of the infinitary divisors of n.

This page as a plain text file.
%I A375230 #7 Aug 06 2024 11:14:56
%S A375230 1,3,3,3,3,9,3,9,3,9,3,9,3,9,9,3,3,9,3,9,9,9,3,27,3,9,9,9,3,27,3,9,9,
%T A375230 9,9,9,3,9,9,27,3,27,3,9,9,9,3,9,3,9,9,9,3,27,9,27,9,9,3,27,3,9,9,9,9,
%U A375230 27,3,9,9,27,3,27,3,9,9,9,9,27,3,9,3,9,3,27
%N A375230 The total number of infinitary divisors of the infinitary divisors of n.
%H A375230 Amiram Eldar, <a href="/A375230/b375230.txt">Table of n, a(n) for n = 1..10000</a>
%F A375230 a(n) = Sum_{d infinitary divisor of n} A037445(d).
%F A375230 Multiplicative with a(p^e) = 3^A000120(e).
%F A375230 a(n) = 3^A064547(n).
%F A375230 a(n) = A007425(n) if and only if n is squarefree (A005117).
%F A375230 a(n) = A074816(n) if and only if n is in A138302.
%t A375230 f[p_, e_] := 3^DigitCount[e, 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A375230 (PARI) a(n) = vecprod(apply(x -> 3^hammingweight(x), factor(n)[,2]));
%Y A375230 Cf. A000120, A005117, A037445, A064547, A077609, A138302.
%Y A375230 Similar sequences: A007425 (analogous with all the divisors), A074816 (unitary analog).
%K A375230 nonn,easy,mult
%O A375230 1,2
%A A375230 _Amiram Eldar_, Aug 06 2024