This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375239 #19 Aug 17 2024 23:09:24 %S A375239 2522,4921,18241,25553,27290,40313,90834,95513,98282,98705,117002, %T A375239 120962,136073,136865,148682,153794,181441,181554,185825,211673, %U A375239 211674,212401,215034,216361,231002,231665,234641,236041,236634,266282,281402,285410,298433,298434,330473,331985,346505,381353 %N A375239 Numbers k such that k, k+1, ..., k+5 all have 3 prime factors (counted with multiplicity). %C A375239 First differs from A045942 at position 20, where a(20) = 211673 but A045942(20) = 204323. %C A375239 All terms == 1 or 2 (mod 8). %C A375239 One of the numbers k, k+1, ..., k+5 is a Zumkeller number (A083207), since it is of the form 2*3*p, where p is prime > 3. - _Ivan N. Ianakiev_, Aug 08 2024 %H A375239 Robert Israel, <a href="/A375239/b375239.txt">Table of n, a(n) for n = 1..10000</a> %e A375239 a(3) = 18241 is a term because %e A375239 18241 = 17 * 29 * 37 %e A375239 18242 = 2 * 7 * 1303 %e A375239 18243 = 3^2 * 2027 %e A375239 18244 = 2^2 * 4561 %e A375239 18245 = 5 * 41 * 89 %e A375239 18246 = 2 * 3 * 3041 %e A375239 are all products of 3 primes (counted with multiplicity). %p A375239 R:= NULL: count:= 0: p:= 1: %p A375239 while count < 100 do %p A375239 p:= nextprime(p); %p A375239 x:= 4*p; %p A375239 if andmap(t -> numtheory:-bigomega(t)=3, [x-2,x-1,x+1,x+2]) then %p A375239 if numtheory:-bigomega(x-3) = 3 then R:= R, x-3; count:= count+1; fi; %p A375239 if numtheory:-bigomega(x+3) = 3 then R:= R, x-2; count:= count+1; fi; %p A375239 fi; %p A375239 od: %p A375239 R; %t A375239 s = {}; Do[If[{3, 3, 3, 3, 3, 3} == PrimeOmega[Range[k, k + 5]], %t A375239 AppendTo[s, k]], {k, 1000000}]; s %Y A375239 Subsequence of A045942 and of A113789. Contains A259756. %K A375239 nonn %O A375239 1,1 %A A375239 _Zak Seidov_ and _Robert Israel_, Aug 06 2024