cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375251 Denominators of the polynomials A375252 (polynomial part of the partition function restricted to partitions of the integer x with parts in (1,2,...,n)).

This page as a plain text file.
%I A375251 #11 Aug 10 2024 09:02:31
%S A375251 1,4,72,288,86400,1036800,152409600,1219276800,438939648000,
%T A375251 26336378880000,6373403688960000,229442532802560000,
%U A375251 2714305163054284800000,228001633696559923200000,3420024505448398848000000,164161176261523144704000000,759081279033283021111296000000
%N A375251 Denominators of the polynomials A375252 (polynomial part of the partition function restricted to partitions of the integer x with parts in (1,2,...,n)).
%F A375251 (Sum_{k=0..n-1} A375252(n, k)*x^k) / a(n) = W1([n], x), where W1([n], x) denotes the first Sylvester wave restricted to parts in [n].
%F A375251 a(n) = denominator(W(n)) where W(n) = [t^(-1)] exp(t*x)/Product_{k=1..n}(1 - exp(-t*k)).
%F A375251 a(n) = A375250(n)*n!*(n - 1)!.
%p A375251 read(PARTITIONS):  # See the Sills & Zeilberger paper cited in A375252.
%p A375251 seq(denom(op(pmnPC(n,x)[1])), n = 1..17);
%p A375251 # Or, standalone:
%p A375251 W := proc(n) local k; exp(t*x)/mul(1 - exp(-t*k), k=1..n);
%p A375251 expand(series(%, t, n+1)); coeff(%, t, -1) end:
%p A375251 a := n -> denom(W(n)): seq(a(n), n = 1..17);
%Y A375251 Cf. A375252 (numerators), A375250.
%K A375251 nonn,frac
%O A375251 1,2
%A A375251 _Peter Luschny_, Aug 07 2024