A375258 Array read by antidiagonals: T(k,n) is the least positive integer whose sum of base-2 digits is k and sum of base-3 digits is n, or -1 if there is none.
1, 2, 3, -1, 6, 81, 8, 5, 28, 27, -1, 20, 7, 30, 2187, 128, 17, 14, 15, 244, 243, -1, 68, 25, 46, 31, 246, -1, 512, 8193, 26, 23, 94, 63, 6570, 19683, -1, 80, 131, 78, 47, 126, 247, 2430, 59049, 2048, 1025, 134, 53, 62, 95, 254, 255, 19926, 531441, -1, 2050, 161, 212, 79, 222, 127, 766, 2431
Offset: 1
Examples
Array starts 1, 2, -1, 8, -1, 128, -1, 512, ... 3, 6, 5, 20, 17, 68, 8193, 80, ... 81, 28, 7, 14, 25, 26, 131, 134, ... 27, 30, 15, 46, 23, 78, 53, 212, ... 2187, 244, 31, 94, 47, 62, 79, 158, ... 243, 246, 63, 126, 95, 222, 125, 238, ... -1, 6570, 247, 254, 127, 382, 223, 446, ... 19683, 2430, 255, 766, 507, 510, 383, 958, ...
Links
- Robert Israel, Table of n, a(n) for n = 1..253 (first 22 antidiagonals)
- Vassil S. Dimitrov and Everett W. Howe, Powers of 3 with few nonzero bits and a conjecture of Erdős, arXiv:2105.06440 [math.NT], 2021.
Programs
-
Maple
T:= Matrix(8,8,-1): for x from 1 to 10^5 do k:= convert(convert(x,base,2),`+`); n:= convert(convert(x,base,3),`+`); if k <= 8 and n <= 8 and T[k,n] = -1 then T[k,n]:= x; fi od: T;
Comments