cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375269 Partial products of A115975.

Original entry on oeis.org

1, 2, 6, 24, 120, 840, 6720, 60480, 665280, 8648640, 147026880, 2793510720, 64250746560, 1606268664000, 43369253928000, 1257708363912000, 38988959281272000, 1247646697000704000, 46162927789026048000, 1892680039350067968000, 81385241692052922624000, 3825106359526487363328000
Offset: 1

Views

Author

Amiram Eldar, Aug 09 2024

Keywords

Comments

First differs from A334395 at n = 42.
Numbers with a record number of dual-Zeckendorf-infinitary divisors (A331109). Also, indices of records in A375272.
a(n) is the least number k such that A375272(k) = n-1 and A331109(k) = 2^(n-1).

Examples

			A115975 begins with 1, 2, 3, 4, 5, 7, ..., so, a(1) = 1, a(2) = 1 * 2 = 2, a(3) = 1 * 2 * 3 = 6, ..., a(6) = 1 * 2 * 3 * 4 * 5 * 7 = 840.
		

Crossrefs

Cf. A037992 (analogous with "Fermi-Dirac primes", A050376), A115975, A331109, A334395, A375271, A375272.
Subsequence of A025487.

Programs

  • Mathematica
    fib[lim_] := Module[{s = {}, f = 1, k = 2}, While[f <= lim, AppendTo[s, f]; k++; f = Fibonacci[k]]; s];
    seq[max_] := Module[{s = {}, p = 2, e = 1, f = {}}, While[e > 0, e = Floor[Log[p, max]]; If[f == {}, f = fib[e], f = Select[f, # <= e &]]; s = Join[s, p^f]; p = NextPrime[p]]; FoldList[Times, 1, Sort[s]]]; seq[250]
  • PARI
    fib(lim) = {my(s = List(), f = 1, k = 2); while(f <= lim, listput(s, f); k++; f = fibonacci(k)); Vec(s);}
    lista(pmax) = {my(s = [1], p = 2, e = 1, f = [], r = 1); while(e > 0, e = logint(pmax, p); if(#f == 0, f = fib(e), f = select(x -> x <= e, f)); s = concat(s, apply(x -> p^x, f)); p = nextprime(p+1)); s = vecsort(s); for(i = 1, #s, r *= s[i]; print1(r, ", "));}

Formula

a(n) = Product_{k=1..n} A115975(k).