cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375271 Partial products of A375270.

Original entry on oeis.org

1, 2, 6, 30, 210, 1680, 18480, 240240, 4084080, 77597520, 1784742960, 48188059920, 1397453737680, 43321065868080, 1602879437118960, 65718056921877360, 2825876447640726480, 132816193039114144560, 7039258231073049661680, 415316235633309930039120, 25334290373631905732386320
Offset: 1

Views

Author

Amiram Eldar, Aug 09 2024

Keywords

Comments

Numbers with a record number of Zeckendorf-infinitary divisors (A318465). Also, indices of records in A318464.
a(n) is the least number k such that A318464(k) = n-1 and A318465(k) = 2^(n-1).

Examples

			A375270 begins with 1, 2, 3, 5, ..., so, a(1) = 1, a(2) = 1 * 2 = 2, a(3) = 1 * 2 * 3 = 6, a(4) = 1 * 2 * 3 * 5 = 30.
		

Crossrefs

Cf. A037992 (analogous with "Fermi-Dirac primes", A050376), A318464, A318465, A375270.
Subsequence of A025487.

Programs

  • Mathematica
    fib[lim_] := Module[{s = {}, f = 1, k = 2}, While[f <= lim, AppendTo[s, f]; k += 2; f = Fibonacci[k]]; s];
    seq[max_] := Module[{s = {}, p = 2, e = 1, f = {}}, While[e > 0, e = Floor[Log[p, max]]; If[f == {}, f = fib[e], f = Select[f, # <= e &]]; s = Join[s, p^f]; p = NextPrime[p]]; FoldList[Times, 1, Sort[s]]]; seq[100]
  • PARI
    fib(lim) = {my(s = List(), f = 1, k = 2); while(f <= lim, listput(s, f); k += 2; f = fibonacci(k)); Vec(s);}
    lista(pmax) = {my(s = [1], p = 2, e = 1, f = [], r = 1); while(e > 0, e = logint(pmax, p); if(#f == 0, f = fib(e), f = select(x -> x <= e, f)); s = concat(s, apply(x -> p^x, f)); p = nextprime(p+1)); s = vecsort(s); for(i = 1, #s, r *= s[i]; print1(r, ", "))}

Formula

a(n) = Product_{k=1..n} A375270(k).