cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375274 Decimal expansion of the asymptotic density of the exponentially Fibonacci numbers (A115063).

This page as a plain text file.
%I A375274 #8 Aug 09 2024 08:29:55
%S A375274 9,4,4,3,3,5,9,0,5,0,6,4,0,6,3,3,2,4,4,8,0,5,7,3,1,3,7,7,5,6,6,6,8,8,
%T A375274 0,5,6,1,4,6,3,4,5,8,3,2,2,2,0,2,3,5,5,5,9,2,3,6,8,3,7,7,0,4,5,5,9,3,
%U A375274 9,5,3,8,4,6,5,4,4,6,8,5,8,7,1,9,4,1,4,2,8,0,5,2,0,3,3,7,9,2,7,4,7,9,7,2,4
%N A375274 Decimal expansion of the asymptotic density of the exponentially Fibonacci numbers (A115063).
%C A375274 This constant was apparently first calculated by _Juan Arias-de-Reyna_ and _Peter J. C. Moses_ in 2015 (see A115063).
%F A375274 Equals Product_{p prime} (1 + Sum_{i>=2} (u(i) - u(i-1))/p^i), where u(i) = A010056(i) is the characteristic function of the Fibonacci numbers (A000045) (first formula at A115063).
%F A375274 Equals Product_{p prime} (1 + Sum_{i>=4} (-1)^(i+1)/p^A259623(i)).
%F A375274 Equals Product_{p prime} ((1 - 1/p) * (1 + Sum_{i>=2} 1/p^Fibonacci(i))).
%e A375274 0.94433590506406332448057313775666880561463458322202...
%t A375274 $MaxExtraPrecision = m = 500; em = 16; f[x_] := Log[(1 - x) * (1 + Sum[x^Fibonacci[e], {e, 2, em}])]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x] * Range[0, m]]; RealDigits[Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 105][[1]]
%o A375274 (PARI) c(imax) = prodeulerrat((1-1/p)*(1 + sum(i = 2, imax, 1/p^fibonacci(i))));
%o A375274 f(prec) = {default(realprecision, prec); my(k = 2, c1 = 0, c2 = c(k)); while(c1 != c2, k++; c1 = c2; c2 = c(k)); c1;}
%o A375274 f(120)
%Y A375274 Cf. A000045, A010056, A115063, A259623.
%K A375274 nonn,cons
%O A375274 0,1
%A A375274 _Amiram Eldar_, Aug 09 2024