This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375306 #16 Aug 12 2024 13:18:38 %S A375306 0,1,3,2,5,7,4,9,101,10,11,21,12,13,23,14,15,25,16,17,27,18,19,29,30, %T A375306 31,41,32,33,43,34,35,45,36,37,47,38,39,49,50,51,61,52,53,63,54,55,65, %U A375306 56,57,67,58,59,69,70,71,81,72,73,83,74,75,85,76,77,87,78,79,89,90,91,211,6,93,213,8,95,215,2110,97 %N A375306 Terms as well as digits fit the even/odd/odd pattern; this is the lexicographically earliest injective sequence with this property. %H A375306 Michael S. Branicky, <a href="/A375306/b375306.txt">Table of n, a(n) for n = 1..10000</a> %e A375306 a(7) = 4, a(8) = 9, a(9) = 101, a(10) = 10; terms follow the even/odd/odd pattern and so do their digits: 4/9/1 and 0/1/1. %o A375306 (Python) %o A375306 from itertools import count, islice, repeat %o A375306 def c(s, i): %o A375306 return all(int(d)%2 == int((i+j)%3 > 0) for j, d in enumerate(s)) %o A375306 def agen(): # generator of terms %o A375306 seen, s = set(), 0 %o A375306 for n in count(0): %o A375306 eo = int(n%3 > 0) %o A375306 an = next(k for k in count(eo, 2) if k not in seen and c(str(k), s)) %o A375306 yield an %o A375306 seen.add(an) %o A375306 s += len(str(an)) %o A375306 print(list(islice(agen(), 99))) # _Michael S. Branicky_, Aug 11 2024 %Y A375306 Cf. A217555, A375305. %K A375306 base,nonn %O A375306 1,3 %A A375306 _Eric Angelini_, Aug 11 2024