A375339 If n has exactly one non-unitary prime factor then a(n) is the exponent of the highest power of this prime that divides n, otherwise a(n) = 0.
0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 3, 2, 0, 3, 2, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 3, 0, 3, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 2, 0, 0, 0, 5, 0, 2, 2, 0, 0, 0, 0, 3, 0
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
a[n_] := Module[{e = Select[FactorInteger[n][[;; , 2]], # > 1 &]}, If[Length[e] == 1, e[[1]], 0]]; Array[a, 100]
-
PARI
a(n) = {my(e = select(x -> x > 1, factor(n)[,2])); if(#e == 1, e[1], 0);}
Formula
a(A190641(n)) >= 2.
a(n) = 2 if and only if n is in A060687.
a(n) = 3 if and only if n is in A048109.
a(n) <= 3 if and only if n is in A082293.
Asymptotic mean: = Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} (2*p-1)/((p-1)^2*(p+1)) / zeta(2) = A375340 / A013661 = 0.92105359989459565838... .
Asymptotic second raw moment: = Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)^2 = Sum_{p prime} (4*p^2-3*p+1)/((p-1)^3*(p+1)) / zeta(2) = 3.04027120804428071157... .
The asymptotic second central moment, or variance, is - ^2 = 2.19193147416548680815... and the asymptotic standard deviation is sqrt( - ^2) = 1.48051729951577627898... .
Comments