cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A375339 If n has exactly one non-unitary prime factor then a(n) is the exponent of the highest power of this prime that divides n, otherwise a(n) = 0.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 3, 2, 0, 3, 2, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 3, 0, 3, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 2, 0, 0, 0, 5, 0, 2, 2, 0, 0, 0, 0, 3, 0
Offset: 1

Views

Author

Amiram Eldar, Aug 12 2024

Keywords

Comments

First differs from A212172, A275812 and A372603 at n = 36.
If n = m * p^e, such that m is squarefree, p is a prime that does not divide m and e >= 2, then a(n) = e, otherwise a(n) = 0.
By definition all the positive terms are larger than 1.
The asymptotic density of 0's in this sequence is 1 - Sum_{p prime} (1/(p^2-1)) / zeta(2) = 1 - A059956 * A154945 = 0.66461069244308962639... .
The asymptotic density of the occurrences of k >= 2 in this sequence is Sum_{p prime} (1/(p^(k-1)*(p+1))) / zeta(2). E.g., 0.200755... (A271971) for k = 2, 0.0741777... for k = 3, and 0.0320652... for k = 4.

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{e = Select[FactorInteger[n][[;; , 2]], # > 1 &]}, If[Length[e] == 1, e[[1]], 0]]; Array[a, 100]
  • PARI
    a(n) = {my(e = select(x -> x > 1, factor(n)[,2])); if(#e == 1, e[1], 0);}

Formula

a(n) = A051903(n) * A359466(n).
a(n) = A005361(n) * A359466(n).
a(A190641(n)) >= 2.
a(n) = 2 if and only if n is in A060687.
a(n) = 3 if and only if n is in A048109.
a(n) <= 3 if and only if n is in A082293.
Asymptotic second raw moment: = Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)^2 = Sum_{p prime} (4*p^2-3*p+1)/((p-1)^3*(p+1)) / zeta(2) = 3.04027120804428071157... .

A375340 Decimal expansion of Sum_{p prime} ((2*p-1)/((p+1)*(p-1)^2)).

Original entry on oeis.org

1, 5, 1, 5, 0, 7, 2, 4, 4, 3, 8, 5, 9, 8, 1, 6, 4, 2, 0, 6, 1, 8, 2, 2, 3, 1, 0, 1, 2, 1, 8, 2, 3, 5, 2, 1, 6, 7, 8, 7, 0, 5, 0, 5, 4, 6, 7, 5, 5, 6, 0, 1, 1, 0, 7, 7, 0, 0, 5, 2, 0, 6, 6, 9, 0, 3, 4, 9, 6, 6, 2, 5, 3, 0, 3, 2, 3, 8, 3, 6, 3, 4, 3, 3, 1, 5, 8, 0, 3, 0, 0, 9, 6, 0, 7, 1, 0, 9, 9, 8, 3, 5, 1, 3, 9
Offset: 1

Views

Author

Amiram Eldar, Aug 12 2024

Keywords

Examples

			1.515072443859816420618223101218235216787050546755601...
		

Crossrefs

Programs

  • PARI
    sumeulerrat((2*p-1)/((p+1)*(p-1)^2))

Formula

Equals Sum_{k>=2} A028242(k) * P(k), where P is the prime zeta function.
Equals zeta(2) * Limit_{m->oo} (1/m) * Sum_{k=1..m} A375339(k).
Equals A154945 * Limit_{m->oo} (1/m) * Sum_{k=1..m} A375341(k).

A375342 The maximum exponent in the prime factorization of the numbers whose powerful part is a power of a squarefree number that is larger than 1.

Original entry on oeis.org

2, 3, 2, 2, 4, 2, 2, 3, 2, 3, 2, 5, 2, 3, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 6, 2, 2, 2, 4, 4, 2, 3, 2, 2, 5, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 3, 2, 7, 2, 3, 3, 2, 2, 2, 2, 3, 2, 2, 5, 4, 2, 3, 2, 2, 2, 2, 4, 2, 3, 2, 3, 6, 2, 2, 2, 2, 4, 2, 3, 2, 5, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 3, 3, 2, 8, 2, 2, 3, 2, 3, 4, 2, 2, 2, 3
Offset: 1

Views

Author

Amiram Eldar, Aug 12 2024

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{e = Select[FactorInteger[n][[;; , 2]], # > 1 &]}, If[Length[e] > 0 && SameQ @@ e, e[[1]], Nothing]]; Array[s, 300]
  • PARI
    lista(kmax) = {my(e); for(k = 1, kmax, e = select(x -> x > 1, factor(k)[,2]); if(#e > 0 && vecmin(e) == vecmax(e), print1(e[1], ", ")));}

Formula

a(n) = A051903(A375142(n)).
a(n) = 2 if and only if A375142(n) is in A067259.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=2} k*d(k) / Sum_{k>=2} d(k) = 2.70113273169250927084..., where d(k) = (f(k)-1)/zeta(2) is the asymptotic density of terms m of A375142 with A051903(m) = k, f(k) = zeta(k) * Product_{p prime} (1 + Sum_{i=k+1..2*k-1} (-1)^i/p^i), if k is even, and f(k) = (zeta(2*k)/zeta(k)) * Product_{p prime} (1 + 2/p^k + Sum_{i=k+1..2*k-1} (-1)^(i+1)/p^i) if k is odd > 1.
Showing 1-3 of 3 results.