A375342 The maximum exponent in the prime factorization of the numbers whose powerful part is a power of a squarefree number that is larger than 1.
2, 3, 2, 2, 4, 2, 2, 3, 2, 3, 2, 5, 2, 3, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 6, 2, 2, 2, 4, 4, 2, 3, 2, 2, 5, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 3, 2, 7, 2, 3, 3, 2, 2, 2, 2, 3, 2, 2, 5, 4, 2, 3, 2, 2, 2, 2, 4, 2, 3, 2, 3, 6, 2, 2, 2, 2, 4, 2, 3, 2, 5, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 3, 3, 2, 8, 2, 2, 3, 2, 3, 4, 2, 2, 2, 3
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
s[n_] := Module[{e = Select[FactorInteger[n][[;; , 2]], # > 1 &]}, If[Length[e] > 0 && SameQ @@ e, e[[1]], Nothing]]; Array[s, 300]
-
PARI
lista(kmax) = {my(e); for(k = 1, kmax, e = select(x -> x > 1, factor(k)[,2]); if(#e > 0 && vecmin(e) == vecmax(e), print1(e[1], ", ")));}
Formula
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=2} k*d(k) / Sum_{k>=2} d(k) = 2.70113273169250927084..., where d(k) = (f(k)-1)/zeta(2) is the asymptotic density of terms m of A375142 with A051903(m) = k, f(k) = zeta(k) * Product_{p prime} (1 + Sum_{i=k+1..2*k-1} (-1)^i/p^i), if k is even, and f(k) = (zeta(2*k)/zeta(k)) * Product_{p prime} (1 + 2/p^k + Sum_{i=k+1..2*k-1} (-1)^(i+1)/p^i) if k is odd > 1.