A375353 T(m,n) = Number of m X n knot/link mosaics read by rows, with 1<=n<=m.
1, 1, 2, 1, 4, 22, 1, 8, 130, 2594, 1, 16, 778, 54226, 4183954, 1, 32, 4666, 1144526, 331745962, 101393411126, 1, 64, 27994, 24204022, 26492828950, 31507552821550, 38572794946976686, 1, 128, 167962, 512057546, 2119630825150, 9841277889785426, 47696523856560453790, 234855052870954505606714
Offset: 1
Examples
Triangle begins: 1; 1, 2; 1, 4, 22; 1, 8, 130, 2594; 1, 16, 778, 54226, 4183954; 1, 32, 4666, 1144526, 331745962, 101393411126; ... T(2,2) = 2 since the only suitably connected 2 X 2 link mosaics are the empty mosaic and the mosaic depicting an unknot attaining its minimal crossing number. For all n >= 1, we have T(n,1) = 1 since the only suitably connected mosaic with one column is empty.
Links
- Luc Ta, First 11 rows of the triangle, flattened
- K. Hong, H. Lee, H. J. Lee and S. Oh, Small knot mosaics and partition matrices, J. Phys. A: Math. Theor. 47 (2014) 435201; arXiv:1312.4009 [math.GT], 2013-2014.
- Samuel J. Lomonaco and Louis H. Kauffman, Quantum Knots and Mosaics, Proc. Sympos. Applied Math., Amer. Math. Soc., Vol. 68 (2010), pp. 177-208.
- Seungsang Oh, Kyungpyo Hong, Ho Lee, and Hwa Jeong Lee, Quantum knots and the number of knot mosaics, arXiv: 1412.4460 [math.GT], 2014.
- Index entries for sequences related to knots
Crossrefs
Programs
-
Mathematica
x[0] = o[0] = {{1}}; x[n_] := ArrayFlatten[{{x[n - 1], o[n - 1]}, {o[n - 1], x[n - 1]}}]; o[n_] := ArrayFlatten[{{o[n - 1], x[n - 1]}, {x[n - 1], 4*o[n - 1]}}]; mosaics[m_, n_] := If[m > 1 && n > 1, 2*Total[MatrixPower[x[m - 2] + o[m - 2], n - 2], 2], 1]; Flatten[ParallelTable[mosaics[m, n], {m, 1, 11}, {n, 1, m}]] (* Luc Ta, Aug 13 2024 *)
Comments