A375355 T(m, n) is the number of m X n period knot/link mosaics read by rows, with 1 <= n <= m.
7, 29, 359, 133, 5519, 316249, 641, 91283, 19946891, 4934695175, 3157, 1549799, 1298065813, 1268810595131, 1300161356831107, 15689, 26576579, 85436799491, 330595705214327, 1353434715973001999, 5644698772550126097593, 78253, 457549079, 5648174618317, 86566215054880187, 1416905739955631598043, 23696846086162116561085541, 399312236302057306354637147077
Offset: 1
Examples
Triangle begins: 7; 29, 359; 133, 5519, 316249; 641, 91283, 19946891, 4934695175; 3157, 1549799, 1298065813, 1268810595131, 1300161356831107; ... T(1,1) = 7 since the only period 1 X 1 link mosaics are given by the tiles T_0 and T_5 through T_10 of Lomonaco and Kauffman.
Links
- Luc Ta, First 11 rows of the triangle, flattened
- Samuel J. Lomonaco and Louis H. Kauffman, Quantum Knots and Mosaics, Proc. Sympos. Applied Math., Amer. Math. Soc., Vol. 68 (2010), pp. 177-208.
- Seungsang Oh, Kyungpyo Hong, Ho Lee, Hwa Jeong Lee, and Mi Jeong Yeon, Period and toroidal knot mosaics, arXiv: 1703.04867 [math.GT], 2017.
- Index entries for sequences related to knots
Programs
-
Mathematica
x[0] = o[0] = {{1}}; y[0] = p[0] = {{0}}; x[n_] := ArrayFlatten[{{x[n - 1], p[n - 1]}, {p[n - 1], x[n - 1]}}]; y[n_] := ArrayFlatten[{{y[n - 1], o[n - 1]}, {o[n - 1], y[n - 1]}}]; o[n_] := ArrayFlatten[{{o[n - 1], y[n - 1]}, {y[n - 1], 4 * o[n - 1]}}]; p[n_] := ArrayFlatten[{{p[n - 1], x[n - 1]}, {x[n - 1], 4 * p[n - 1]}}]; periodcount[m_, n_] := Tr[MatrixPower[x[m] + o[m], n]]; Flatten[ParallelTable[periodcount[m, n], {m, 1, 11}, {n, 1, m}]]
Comments