cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375359 The maximum exponent in the prime factorization of the smallest number whose square is divisible by n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Aug 13 2024

Keywords

Comments

Differs from A050361 at n = 1, 64, 128, 192, ... . Differs from A366902 at n = 1, 64, 192, 216, ... . Differs from A325837 at n = 1, 216, 432, 648, ... .

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Max[(If[EvenQ[#], #, # + 1]) & /@ e]/2]; a[1] = 0; Array[a, 100]
  • PARI
    a(n) = if(n == 1, 0, vecmax(apply(x -> if(x % 2, x+1, x), factor(n)[,2]))/2);

Formula

a(n) = A051903(A019554(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + Sum{k>=1} (1 - 1/zeta(2*k+1)) = 1.21464720975357037829... .