cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375370 Decimal expansion of log(2)/3 + zeta(3)/(2*Pi^2).

This page as a plain text file.
%I A375370 #12 Aug 19 2024 03:13:15
%S A375370 2,9,1,9,4,5,9,7,4,3,0,3,4,3,4,9,7,8,0,3,2,9,1,3,7,6,8,0,9,5,0,3,5,0,
%T A375370 7,5,9,8,5,8,3,4,3,4,5,2,1,0,0,3,2,9,5,7,2,1,2,8,3,7,1,1,6,2,1,5,8,7,
%U A375370 3,5,0,9,8,7,9,7,7,2,0,3,5,8,9,0,8,7,6,9
%N A375370 Decimal expansion of log(2)/3 + zeta(3)/(2*Pi^2).
%H A375370 Olivier Espinosa and Victor H. Moll, <a href="https://dx.doi.org/10.1023/A:1015706300169">On some integrals involving the Hurwitz zeta function: Part 1</a>, Raman. J. 6 (2002) 159-188, eq. (5.7).
%F A375370 Equals -Integral_{x=0..1} x^2* log(sin(Pi*x)) dx.
%e A375370 0.29194597430343497803291376809503507598583434521003...
%p A375370 log(2)/3+Zeta(3)/2/Pi^2 ; evalf(%) ;
%t A375370 RealDigits[Log[2] / 3 + Zeta[3] / (2*Pi^2), 10, 120][[1]] (* _Amiram Eldar_, Aug 19 2024 *)
%Y A375370 Cf. A193535.
%K A375370 nonn,cons
%O A375370 0,1
%A A375370 _R. J. Mathar_, Aug 13 2024