This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375373 #18 Dec 11 2024 13:07:04 %S A375373 1,-2,4,-4,6,-4,9,-4,16,0,28,16,57,58,132,172,322,476,817,1272,2112, %T A375373 3360,5496,8832,14353,23158,37540,60668,98238,158876,257145,415988, %U A375373 673168,1089120,1762324,2851408,4613769,7465138,12078948,19544044,31623034,51167036 %N A375373 Expansion of 1/( (1 + x)^2 * (1 - x^2*(1 + x)^2) ). %H A375373 Harvey P. Dale, <a href="/A375373/b375373.txt">Table of n, a(n) for n = 0..1000</a> %H A375373 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (-2,0,4,6,4,1). %F A375373 a(n) = -2*a(n-1) + 4*a(n-3) + 6*a(n-4) + 4*a(n-5) + a(n-6). %F A375373 a(n) = Sum_{k=0..floor(n/2)} binomial(2*k-2,n-2*k). %F A375373 2*a(n) = 2*(-1)^n*(n+1) +A212804(n)-A057078(n). - _R. J. Mathar_, Aug 14 2024 %t A375373 CoefficientList[Series[1/((1+x)^2(1-x^2(1+x)^2)),{x,0,50}],x] (* or *) LinearRecurrence[{-2,0,4,6,4,1},{1,-2,4,-4,6,-4},50] (* _Harvey P. Dale_, Dec 11 2024 *) %o A375373 (PARI) my(N=50, x='x+O('x^N)); Vec(1/((1+x)^2*(1-x^2*(1+x)^2))) %o A375373 (PARI) a(n) = sum(k=0, n\2, binomial(2*k-2, n-2*k)); %Y A375373 Cf. A093040, A375372. %K A375373 sign %O A375373 0,2 %A A375373 _Seiichi Manyama_, Aug 13 2024