This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375386 #8 Aug 14 2024 08:33:53 %S A375386 1,2,2,4,2,6,6,6,6,12,6,12,12,18,12,6,24,24,12,6,6,12,18,18,30,30,18, %T A375386 6,30,30,30,24,36,48,24,30,12,18,42,6,54,54,42,48,60,30,42,30,66,42, %U A375386 66,30,60,30,12,6,30,48,84,60,60,78,60,102,60,60,30,78,36,60,90,18,90,6,72,96,30,54 %N A375386 a(n) is the common difference in the longest arithmetic progression of primes ending in prime(n). If there is more than one such arithmetic progression, the smallest difference is chosen. %C A375386 a(n) is the smallest common difference in an arithmetic progression of A373888(n) primes ending in prime(n). %C A375386 a(n) is divisible by all primes < min(A373888(n) + 1, prime(n) - (A373888(n)-1)*a(n)). %H A375386 Robert Israel, <a href="/A375386/b375386.txt">Table of n, a(n) for n = 2..10000</a> %e A375386 a(4) = 2 because the 4th prime is 7 and the arithmetic progression of 3 primes ending in 7, namely 3, 5, 7, has common difference 2. %p A375386 f:= proc(n) local s, i, m, dd, d, j; %p A375386 m:= 1; %p A375386 s:= ithprime(n); %p A375386 for i from n-1 to 1 by -1 do %p A375386 d:= s - ithprime(i); %p A375386 if s - m*d < 2 then return dd fi; %p A375386 for j from 2 while isprime(s-j*d) do od; %p A375386 if j > m then m:= j; dd:= d fi; %p A375386 od; %p A375386 dd %p A375386 end proc: %p A375386 map(f, [$2..100]); %Y A375386 Cf. A000040, A373888. %K A375386 nonn,look %O A375386 2,2 %A A375386 _Robert Israel_, Aug 13 2024