A375389 a(n) is the smallest abundant number k such that n - k is abundant, or -1 if there is no such k.
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 12, -1, -1, -1, -1, -1, 12, -1, 12, -1, -1, -1, 12, -1, 18, -1, 20, -1, 12, -1, 20, -1, -1, -1, 12, -1, 20, -1, 12, -1, 12, -1, 20, -1, 18, -1, 12, -1, 20, -1, 24, -1, 12, -1, 12, -1, 30, -1, 12, -1, 18
Offset: 1
Examples
a(30) = 12 because 30 = 12 + 18 where 12 and 18 are abundant numbers.
Links
- Robert Israel, Table of n, a(n) for n = 1..21000
Programs
-
Maple
Ab:= select(t -> numtheory:-sigma(t) > 2*t, [$1..10^4]): f:= proc(n) local i,x; for i from 1 do x:= Ab[i]; if 2*x > n then return -1 fi; if ListTools:-BinarySearch(Ab, n-x) <> 0 then return x fi od; end proc: map(f, [$1..100]);
Comments