cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375389 a(n) is the smallest abundant number k such that n - k is abundant, or -1 if there is no such k.

Original entry on oeis.org

-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 12, -1, -1, -1, -1, -1, 12, -1, 12, -1, -1, -1, 12, -1, 18, -1, 20, -1, 12, -1, 20, -1, -1, -1, 12, -1, 20, -1, 12, -1, 12, -1, 20, -1, 18, -1, 12, -1, 20, -1, 24, -1, 12, -1, 12, -1, 30, -1, 12, -1, 18
Offset: 1

Views

Author

Robert Israel, Aug 13 2024

Keywords

Comments

a(n) >= 12 for n >= 20162.
a(n) = 12 if n >= 24 and n == 0 (mod 6).
12 <= a(n) <= 20 if n >= 26 and n == 2 (mod 6).
12 <= a(n) <= 40 if n >= 52 and n == 4 (mod 6).
If a(n) > 0 then 0 < a(k n - (k-1) a(n)) <= a(n) for all positive integers k.

Examples

			a(30) = 12 because 30 = 12 + 18 where 12 and 18 are abundant numbers.
		

Crossrefs

Programs

  • Maple
    Ab:= select(t -> numtheory:-sigma(t) > 2*t, [$1..10^4]):
    f:= proc(n) local i,x;
      for i from 1 do
        x:= Ab[i];
        if 2*x > n then return -1 fi;
        if ListTools:-BinarySearch(Ab, n-x) <> 0 then return x fi
      od;
    end proc:
    map(f, [$1..100]);