This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375391 #16 Aug 17 2024 14:21:17 %S A375391 -1,-1,1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,1,-1, %T A375391 -1,1,1,1,-1,-1,-1,3,1,-1,-1,-1,1,-1,-1,1,-1,9,1,3,-1,3,1,1,1,1,-1,-1, %U A375391 -1,-1,-1,1,1,3,1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,1,-1,3,1,3,-1,-1,-1,-1 %N A375391 a(n) is the greatest odd number k such that n^2 + j is a semiprime for all odd numbers j from 1 to k. %C A375391 a(n) = -1 if n^2 + 1 is not a semiprime. %C A375391 a(n) <= 1 if n is odd, since n^2 + 3 is divisible by 4. %C A375391 a(n) <= 15 since one of n^2 + 1, n^2 + 3, ..., n^2 + 17 is divisible by 9. %C A375391 First occurrences of values: a(3) = 1, a(34) = 3, a(152) = 5, a(102) = 7, a(44) = 9, a(824264) = 11, a(21394) = 13, a(121364) = 15. %H A375391 Robert Israel, <a href="/A375391/b375391.txt">Table of n, a(n) for n = 1..10000</a> %e A375391 a(44) = 9 since 44^2 + 1 = 1937 = 13 * 149, 44^2 + 3 = 1939 = 7 * 277, 44^2 + 5 = 1941 = 3 * 647, 44^2 + 7 = 1943 = 29 * 67 and 44^2 + 9 = 1945 = 5 * 389 are all semiprimes but 44^2 + 11 = 1947 = 3 * 11 * 59 is not a semiprime. %p A375391 f:= proc(n) local i; %p A375391 for i from 1 by 2 while numtheory:-bigomega(n^2+i) = 2 do od: %p A375391 i-2 %p A375391 end proc: %p A375391 map(f, [$1..100]); %Y A375391 Cf. A001358, A085722, A242331, A242333, A375390. %K A375391 sign %O A375391 1,34 %A A375391 _Robert Israel_, Aug 15 2024