cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375395 Expansion of e.g.f. 1 / (exp(-x^3/6) - x).

This page as a plain text file.
%I A375395 #13 Aug 23 2024 08:01:05
%S A375395 1,1,2,7,32,180,1210,9520,85680,867160,9749600,120582000,1626994600,
%T A375395 23782158400,374367193200,6314037129400,113591474796800,
%U A375395 2171267969270400,43944509528920000,938808209417478400,21111813400597920000,498498097342637392000
%N A375395 Expansion of e.g.f. 1 / (exp(-x^3/6) - x).
%F A375395 a(n) = n! * Sum_{k=0..floor(n/3)} ((n-3*k+1)/6)^k/k!.
%p A375395 A375395 := proc(n)
%p A375395     n!*add(((n-3*k+1)/6)^k/k!,k=0..floor(n/3)) ;
%p A375395 end proc:
%p A375395 seq(A375395(n),n=0..60) ; # _R. J. Mathar_, Aug 23 2024
%o A375395 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(exp(-x^3/6)-x)))
%o A375395 (PARI) a(n) = n!*sum(k=0, n\3, ((n-3*k+1)/6)^k/k!);
%Y A375395 Cf. A072597, A375394.
%K A375395 nonn
%O A375395 0,3
%A A375395 _Seiichi Manyama_, Aug 21 2024