cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375403 Numbers whose maximal anti-runs of weakly increasing prime factors (with multiplicity) do not have distinct maxima.

Original entry on oeis.org

4, 8, 9, 16, 18, 24, 25, 27, 32, 36, 40, 48, 49, 50, 54, 56, 64, 72, 75, 80, 81, 88, 96, 98, 100, 104, 108, 112, 120, 121, 125, 128, 135, 136, 144, 147, 150, 152, 160, 162, 168, 169, 176, 184, 189, 192, 196, 200, 208, 216, 224, 225, 232, 240, 242, 243, 245
Offset: 1

Views

Author

Gus Wiseman, Aug 15 2024

Keywords

Comments

First differs from A299117 in having 150.
An anti-run is a sequence with no adjacent equal terms. The maxima of maximal anti-runs in a sequence are obtained by splitting it into maximal anti-run subsequences and taking the greatest term of each.
The partitions with these Heinz numbers are those with (1) some part appearing more than twice or (2) the greatest part appearing more than once.
Note the prime factors can alternatively be written in weakly decreasing order.

Examples

			The maximal anti-runs of prime factors of 150 are ((2,3,5),(5)), with maxima (5,5), so 150 is in the sequence.
The maximal anti-runs of prime factors of 180 are ((2),(2,3),(3,5)), with maxima (2,3,5), so 180 is not in the sequence.
The maximal anti-runs of prime factors of 300 are ((2),(2,3,5),(5)), with maxima (2,5,5), so 300 is in the sequence.
The terms together with their prime indices begin:
    4: {1,1}
    8: {1,1,1}
    9: {2,2}
   16: {1,1,1,1}
   18: {1,2,2}
   24: {1,1,1,2}
   25: {3,3}
   27: {2,2,2}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
		

Crossrefs

For identical instead of distinct we have A065201, complement A065200.
The complement for minima is A375398, counted by A375134.
For minima instead of maxima we have A375399, counted by A375404.
Partitions of this type are counted by A375401.
The complement is A375402, counted by A375133.
A000041 counts integer partitions, strict A000009.
A003242 counts anti-run compositions, ranks A333489.
A number's prime factors (A027746, reverse A238689) have sum A001414, min A020639, max A006530.
A number's prime indices (A112798, reverse A296150) have sum A056239, min A055396, max A061395.
Both have length A001222, distinct A001221.

Programs

  • Mathematica
    Select[Range[150],!UnsameQ@@Max /@ Split[Flatten[ConstantArray@@@FactorInteger[#]],UnsameQ]&]