cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375420 a(n) is the number of straight lines passing through the points (i, prime(i)) and (j, prime(j)) with i < j <= n (where prime(k) denotes the k-th prime number).

This page as a plain text file.
%I A375420 #9 Aug 18 2024 20:20:31
%S A375420 0,1,3,4,8,13,17,20,25,32,40,48,56,66,74,84,94,105,120,135,148,162,
%T A375420 176,191,211,230,247,267,287,306,333,361,385,410,437,462,488,517,545,
%U A375420 571,601,633,663,696,730,761,796,836,879,921,962,1000,1038,1080,1122
%N A375420 a(n) is the number of straight lines passing through the points (i, prime(i)) and (j, prime(j)) with i < j <= n (where prime(k) denotes the k-th prime number).
%F A375420 a(n) <= A000217(n+1).
%e A375420 The first terms, alongside the new lines passing through (n, prime(n)), are:
%e A375420   n  a(n)  New lines passing through (n, prime(n))
%e A375420   -  ----  --------------------------------------------
%e A375420   1     0  {}
%e A375420   2     1  {x + 1}
%e A375420   3     3  {2*x - 1, 3/2*x + 1/2}
%e A375420   4     4  {5/3*x + 1/3}
%e A375420   5     8  {4*x - 9, 3*x - 4, 8/3*x - 7/3, 9/4*x - 1/4}
%o A375420 (PARI) { L = []; for (n = 1, #p = primes(55), print1 (#L = setunion(L, Set(vector(n-1, i, polinterpolate([i, n], [p[i], p[n]]))))", ");); }
%Y A375420 Cf. A000217, A375421.
%K A375420 nonn
%O A375420 1,3
%A A375420 _Rémy Sigrist_, Aug 14 2024