cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375422 a(n) is the maximum number of points from the set {(k, prime(k)), k = 1..n} belonging to a straight line passing through the point (n, prime(n)) (where prime(k) denotes the k-th prime number).

This page as a plain text file.
%I A375422 #12 Aug 17 2024 12:20:36
%S A375422 1,2,2,3,2,2,3,3,4,3,3,4,5,4,5,6,3,7,4,5,8,6,7,3,3,3,4,4,3,4,4,4,5,3,
%T A375422 4,5,6,5,7,4,4,6,5,5,8,4,5,6,6,4,4,4,5,4,5,6,7,5,4,5,4,5,5,8,5,4,6,7,
%U A375422 7,8,9,10,9,10,11,11,12,12,13,13,8,14,9,15
%N A375422 a(n) is the maximum number of points from the set {(k, prime(k)), k = 1..n} belonging to a straight line passing through the point (n, prime(n)) (where prime(k) denotes the k-th prime number).
%C A375422 Is this sequence unbounded?
%H A375422 Rémy Sigrist, <a href="/A375422/b375422.txt">Table of n, a(n) for n = 1..10000</a>
%H A375422 Rémy Sigrist, <a href="/A375422/a375422.txt">C++ program</a>
%H A375422 Rémy Sigrist, <a href="/A375422/a375422.gp.txt">PARI program</a>
%e A375422 The first terms, alongside an appropriate set of points, are:
%e A375422   n   a(n)  Points
%e A375422   --  ----  --------------------------------------------------
%e A375422    1     1  (1,2)
%e A375422    2     2  (1,2), (2,3)
%e A375422    3     2  (1,2), (3,5)
%e A375422    4     3  (2,3), (3,5), (4,7)
%e A375422    5     2  (1,2), (5,11)
%e A375422    6     2  (1,2), (6,13)
%e A375422    7     3  (3,5), (5,11), (7,17)
%e A375422    8     3  (2,3), (5,11), (8,19)
%e A375422    9     4  (3,5), (5,11), (7,17), (9,23)
%e A375422   10     3  (6,13), (7,17), (10,29)
%e A375422   11     3  (8,19), (9,23), (11,31)
%e A375422   12     4  (6,13), (7,17), (10,29), (12,37)
%e A375422   13     5  (6,13), (7,17), (10,29), (12,37), (13,41)
%e A375422   14     4  (8,19), (9,23), (11,31), (14,43)
%e A375422   15     5  (8,19), (9,23), (11,31), (14,43), (15,47)
%e A375422   16     6  (6,13), (7,17), (10,29), (12,37), (13,41), (16,53)
%o A375422 (C++) // See Links section.
%o A375422 (PARI) \\ See Links section.
%Y A375422 Cf. A334046, A375386.
%K A375422 nonn
%O A375422 1,2
%A A375422 _Rémy Sigrist_, Aug 14 2024