A375428 The maximum exponent in the unique factorization of n in terms of distinct terms of A115975 using the Zeckendorf representation of the exponents in the prime factorization of n; a(1) = 0.
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2, 1, 1, 1, 3, 1
Offset: 1
Examples
For n = 16 = 2^4, the Zeckendorf representation of 4 is 101, i.e., 4 = Fibonacci(2) + Fibonacci(4) = 1 + 3. Therefore 16 = 2^(1+3) = 2^1 * 2^3, and a(16) = 3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Comments