This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375429 #9 Aug 16 2024 21:20:53 %S A375429 0,2,2,3,2,2,2,4,3,2,2,3,2,2,2,4,2,3,2,3,2,2,2,4,3,2,4,3,2,2,2,5,2,2, %T A375429 2,3,2,2,2,4,2,2,2,3,3,2,2,4,3,3,2,3,2,4,2,4,2,2,2,3,2,2,3,5,2,2,2,3, %U A375429 2,2,2,4,2,2,3,3,2,2,2,4,4,2,2,3,2,2,2,4,2,3,2,3,2,2,2,5,2,3,3,3,2,2,2,4,2 %N A375429 The indices of the terms of A375428 in the Fibonacci sequence. %C A375429 Since 1 appears twice in the Fibonacci sequence (1 = Fibonacci(1) = Fibonacci(2)), its index here is chosen to be 2. %H A375429 Amiram Eldar, <a href="/A375429/b375429.txt">Table of n, a(n) for n = 1..10000</a> %F A375429 a(n) = A130233(A375428(n)). %F A375429 a(n) = A130233(A051903(n)). %F A375429 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3 - 1/zeta(2) + Sum_{k>=4} (1 - 1/zeta(Fibonacci(k))) = 2.59996215929231584366... . %F A375429 If the chosen index for 1 is 1 instead of 2, then the asymptotic mean is 3 - 2/zeta(2) + Sum_{k>=4} (1 - 1/zeta(Fibonacci(k))) = 1.99203505743828921499... . %e A375429 For n = 16 = 2^4, the Zeckendorf representation of 4 is 101, i.e., 4 = Fibonacci(2) + Fibonacci(4). Therefore 16 = 2^(Fibonacci(2) + Fibonacci(4)) = 2^Fibonacci(2) * 2^Fibonacci(4), and a(16) = 4. %t A375429 A130233[n_] := Module[{k = 2}, While[Fibonacci[k] <= n, k++]; k-1]; a[n_] := A130233[Max[FactorInteger[n][[;;, 2]]]]; a[1] = 0; Array[a, 100] %o A375429 (PARI) A130233(n) = {my(k = 2); while(fibonacci(k) <= n, k++); k-1;} %o A375429 a(n) = if(n == 1, 0, A130233(vecmax(factor(n)[,2]))); %Y A375429 Cf. A000045, A051903, A130233, A375428, A375431. %K A375429 nonn,easy,base %O A375429 1,2 %A A375429 _Amiram Eldar_, Aug 15 2024