cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375429 The indices of the terms of A375428 in the Fibonacci sequence.

This page as a plain text file.
%I A375429 #9 Aug 16 2024 21:20:53
%S A375429 0,2,2,3,2,2,2,4,3,2,2,3,2,2,2,4,2,3,2,3,2,2,2,4,3,2,4,3,2,2,2,5,2,2,
%T A375429 2,3,2,2,2,4,2,2,2,3,3,2,2,4,3,3,2,3,2,4,2,4,2,2,2,3,2,2,3,5,2,2,2,3,
%U A375429 2,2,2,4,2,2,3,3,2,2,2,4,4,2,2,3,2,2,2,4,2,3,2,3,2,2,2,5,2,3,3,3,2,2,2,4,2
%N A375429 The indices of the terms of A375428 in the Fibonacci sequence.
%C A375429 Since 1 appears twice in the Fibonacci sequence (1 = Fibonacci(1) = Fibonacci(2)), its index here is chosen to be 2.
%H A375429 Amiram Eldar, <a href="/A375429/b375429.txt">Table of n, a(n) for n = 1..10000</a>
%F A375429 a(n) = A130233(A375428(n)).
%F A375429 a(n) = A130233(A051903(n)).
%F A375429 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3 - 1/zeta(2) + Sum_{k>=4} (1 - 1/zeta(Fibonacci(k))) = 2.59996215929231584366... .
%F A375429 If the chosen index for 1 is 1 instead of 2, then the asymptotic mean is 3 - 2/zeta(2) + Sum_{k>=4} (1 - 1/zeta(Fibonacci(k))) = 1.99203505743828921499... .
%e A375429 For n = 16 = 2^4, the Zeckendorf representation of 4 is 101, i.e., 4 = Fibonacci(2) + Fibonacci(4). Therefore 16 = 2^(Fibonacci(2) + Fibonacci(4)) = 2^Fibonacci(2) * 2^Fibonacci(4), and a(16) = 4.
%t A375429 A130233[n_] := Module[{k = 2}, While[Fibonacci[k] <= n, k++]; k-1]; a[n_] := A130233[Max[FactorInteger[n][[;;, 2]]]]; a[1] = 0; Array[a, 100]
%o A375429 (PARI) A130233(n) = {my(k = 2); while(fibonacci(k) <= n, k++); k-1;}
%o A375429 a(n) = if(n == 1, 0, A130233(vecmax(factor(n)[,2])));
%Y A375429 Cf. A000045, A051903, A130233, A375428, A375431.
%K A375429 nonn,easy,base
%O A375429 1,2
%A A375429 _Amiram Eldar_, Aug 15 2024