cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375431 The indices of the terms of A375430 in the Fibonacci sequence.

This page as a plain text file.
%I A375431 #9 Aug 16 2024 21:21:17
%S A375431 0,2,2,3,2,2,2,3,3,2,2,3,2,2,2,4,2,3,2,3,2,2,2,3,3,2,3,3,2,2,2,4,2,2,
%T A375431 2,3,2,2,2,3,2,2,2,3,3,2,2,4,3,3,2,3,2,3,2,3,2,2,2,3,2,2,3,4,2,2,2,3,
%U A375431 2,2,2,3,2,2,3,3,2,2,2,4,4,2,2,3,2,2,2,3,2,3,2,3,2,2,2,4,2,3,3,3,2,2,2,3,2
%N A375431 The indices of the terms of A375430 in the Fibonacci sequence.
%C A375431 Since 1 appears twice in the Fibonacci sequence (1 = Fibonacci(1) = Fibonacci(2)), its index here is chosen to be 2.
%H A375431 Amiram Eldar, <a href="/A375431/b375431.txt">Table of n, a(n) for n = 1..10000</a>
%F A375431 a(n) = A072649(1 + A051903(n)) for n >= 2.
%F A375431 a(n) = A072649(A375430(n)) + 1 for n >= 2.
%F A375431 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3 - 1/zeta(2) + Sum_{k>=5} (1 - 1/zeta(Fibonacci(k)-1)) = 2.47666161947309359914... .
%F A375431 If the chosen index for 1 is 1 instead of 2, then the asymptotic mean is 3 - 2/zeta(2) + Sum_{k>=5} (1 - 1/zeta(Fibonacci(k)-1)) = 1.86873451761906697048... .
%e A375431 For n = 8 = 2^3, the dual Zeckendorf representation of 3 is 11, i.e., 3 = Fibonacci(2) + Fibonacci(3). Therefore 8 = 2^(Fibonacci(2) + Fibonacci(3)) = 2^Fibonacci(2) * 2^Fibonacci(3), and a(8) = 3.
%t A375431 A072649[n_] := Module[{k = 0}, While[Fibonacci[k] <= n, k++]; k-2]; a[n_] := A072649[1 + Max[FactorInteger[n][[;;, 2]]]]; a[1] = 0; Array[a, 100]
%o A375431 (PARI) A072649(n) = {my(k = 0); while(fibonacci(k) <= n, k++); k-2;}
%o A375431 a(n) = if(n == 1, 0, A072649(1 + vecmax(factor(n)[,2])));
%Y A375431 Cf. A051903, A072649, A375429, A375430.
%K A375431 nonn,easy,base
%O A375431 1,2
%A A375431 _Amiram Eldar_, Aug 15 2024