cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375441 Expansion of g.f. A(x) satisfying 0 = Sum_{k=0..n} (-1)^k * binomial(3*n-2*k, k) * ([x^k] A(x)^n) for n >= 1.

This page as a plain text file.
%I A375441 #12 Sep 12 2024 15:00:05
%S A375441 1,1,3,27,520,17461,924123,72565316,8092491188,1237738519836,
%T A375441 252223179026317,66826143258640668,22547253821858556366,
%U A375441 9516722710620123685768,4947980149610424524104600,3126554347854062023615490499,2372761989077914432028426533800,2140079932579758851404630992687571
%N A375441 Expansion of g.f. A(x) satisfying 0 = Sum_{k=0..n} (-1)^k * binomial(3*n-2*k, k) * ([x^k] A(x)^n) for n >= 1.
%C A375441 Note that 0 = Sum_{k=0..n} (-1)^k * binomial(n+2*k, 3*k) * ([x^k] D(x)^n) for n >= 1 is satisfied by the function D(x) = 1 + x*D(x)^3 (g.f. of A001764), where coefficient [x^k] D(x)^n = binomial(n+3*k-1, k)*n/(n+2*k).
%H A375441 Paul D. Hanna, <a href="/A375441/b375441.txt">Table of n, a(n) for n = 0..200</a>
%F A375441 a(n) ~ c * d^n * n!^3 * n^alpha, where d = 0.1579852929267375678916376580224..., alpha = 2.6601429516008505168108..., c = 0.86048778713891683578001... - _Vaclav Kotesovec_, Sep 12 2024
%e A375441 G.f.: A(x) = 1 + x + 3*x^2 + 27*x^3 + 520*x^4 + 17461*x^5 + 924123*x^6 + 72565316*x^7 + 8092491188*x^8 + ...
%e A375441 RELATED TABLES.
%e A375441 The table of coefficients of x^k in A(x)^n begins:
%e A375441   n=1: [1, 1,  3,  27,  520,  17461,  924123, ...];
%e A375441   n=2: [1, 2,  7,  60, 1103,  36124, 1887017, ...];
%e A375441   n=3: [1, 3, 12, 100, 1758,  56097, 2890755, ...];
%e A375441   n=4: [1, 4, 18, 148, 2495,  77500, 3937572, ...];
%e A375441   n=5: [1, 5, 25, 205, 3325, 100466, 5029880, ...];
%e A375441   n=6: [1, 6, 33, 272, 4260, 125142, 6170284, ...];
%e A375441   ...
%e A375441 from which we may illustrate the defining property given by
%e A375441 0 = Sum_{k=0..n} (-1)^k * binomial(3*n-2*k, k) * ([x^k] A(x)^n).
%e A375441 Using the coefficients in the table above, we see that
%e A375441   n=1: 0 = 1*1 - 1*1;
%e A375441   n=2: 0 = 1*1 - 4*2 + 1*7;
%e A375441   n=3: 0 = 1*1 - 7*3 + 10*12 - 1*100;
%e A375441   n=4: 0 = 1*1 - 10*4 + 28*18 - 20*148 + 1*2495;
%e A375441   n=5: 0 = 1*1 - 13*5 + 55*25 - 84*205 + 35*3325 - 1*100466;
%e A375441   n=6: 0 = 1*1 - 16*6 + 91*33 - 220*272 + 210*4260 - 56*125142 + 1*6170284;
%e A375441   ...
%e A375441 The triangle A193636(n,k) = binomial(3*n-2*k, k) begins:
%e A375441   n=0: 1;
%e A375441   n=1: 1, 1;
%e A375441   n=2: 1, 4, 1;
%e A375441   n=3: 1, 7, 10, 1;
%e A375441   n=4: 1, 10, 28, 20, 1;
%e A375441   n=5: 1, 13, 55, 84, 35, 1;
%e A375441   n=6: 1, 16, 91, 220, 210, 56, 1;
%e A375441   ...
%o A375441 (PARI) {a(n) = my(A=[1],m); for(i=1, n, A=concat(A, 0); m=#A-1;
%o A375441 A[#A] = sum(k=0, m, (-1)^(m-k+1) * binomial(3*m-2*k, k) * polcoef(Ser(A)^m, k) )/m ); A[n+1]}
%o A375441 for(n=0, 20, print1(a(n), ", "))
%Y A375441 Cf. A193636, A375440, A375450, A375451.
%K A375441 nonn
%O A375441 0,3
%A A375441 _Paul D. Hanna_, Sep 11 2024