cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375448 Expansion of the g.f. A(x) with the property that the sum of the first n coefficients in A(x/n)^n equals n^2 for n >= 1.

This page as a plain text file.
%I A375448 #12 Sep 13 2024 06:36:56
%S A375448 1,3,6,33,357,5283,96534,2067312,50345955,1367512761,40875976152,
%T A375448 1331343423234,46892513148468,1775323414999818,71885746640828286,
%U A375448 3100014000785085216,141857882269044077865,6866221878372182554395,350521791594556907681202,18824690900373744731703396
%N A375448 Expansion of the g.f. A(x) with the property that the sum of the first n coefficients in A(x/n)^n equals n^2 for n >= 1.
%H A375448 Paul D. Hanna, <a href="/A375448/b375448.txt">Table of n, a(n) for n = 0..300</a>
%F A375448 G.f. A(x) satisfies [x^n] x*B'(x/n) / (1 - n*B(x/n)) = n^2 for n >= 1, where B(x/A(x)) = x and B(x) is the g.f. of A375449.
%F A375448 a(n) ~ c * n^(n+1), where c = 0.5698891168602..., conjecture: c = (exp(1)-1)/exp(3*exp(-1)). - _Vaclav Kotesovec_, Sep 13 2024
%e A375448 G.f.: A(x) = 1 + 3*x + 6*x^2 + 33*x^3 + 357*x^4 + 5283*x^5 + 96534*x^6 + 2067312*x^7 + 50345955*x^8 + 1367512761*x^9 + 40875976152*x^10 + ...
%e A375448 The defining property of g.f. A(x) is described below.
%e A375448 The table of coefficients in A(x)^n begins:
%e A375448   n=1: [1,  3,   6,   33,   357,   5283,   96534, ...];
%e A375448   n=2: [1,  6,  21,  102,   948,  13104,  230139, ...];
%e A375448   n=3: [1,  9,  45,  234,  1935,  24678,  414234, ...];
%e A375448   n=4: [1, 12,  78,  456,  3561,  41868,  667746, ...];
%e A375448   n=5: [1, 15, 120,  795,  6150,  67428, 1017540, ...];
%e A375448   n=6: [1, 18, 171, 1278, 10107, 105246, 1501578, ...];
%e A375448   n=7: [1, 21, 231, 1932, 15918, 160587, 2172807, ...];
%e A375448   ...
%e A375448 in which the sum of the first n coefficients in A(x/n)^n equals n^2, as illustrated by
%e A375448   1 = 1;
%e A375448   4 = 1 + 6/2;
%e A375448   9 = 1 + 9/3 + 45/3^2;
%e A375448   16 = 1 + 12/4 + 78/4^2 + 456/4^3;
%e A375448   25 = 1 + 15/5 + 120/5^2 + 795/5^3 + 6150/5^4;
%e A375448   36 = 1 + 18/6 + 171/6^2 + 1278/6^3 + 10107/6^4 + 105246/6^5;
%e A375448   49 = 1 + 21/7 + 231/7^2 + 1932/7^3 + 15918/7^4 + 160587/7^5 + 2172807/7^6;
%e A375448   ...
%e A375448 RELATED SERIES.
%e A375448 Let B(x) be the series reversion of x/A(x), B(x/A(x)) = x, then
%e A375448 B(x) = x + 3*x^2 + 15*x^3 + 114*x^4 + 1230*x^5 + 17541*x^6 + 310401*x^7 + 6502368*x^8 + ... + A375449(n)*x^n + ...
%e A375448 Further, let C(x) = x*B'(x)/(1 - B(x)) = x + 7*x^2 + 55*x^3 + 547*x^4 + 7081*x^5 + 116821*x^6 + 2351497*x^7 + 55390315*x^8 + ...
%e A375448 then the coefficient of x^n in C(x) equals the sum of the initial n terms of A(x)^n for n >= 1; 1 = 1, 7 = 1 + 6, 55 = 1 + 9 + 45, 547 = 1 + 12 +  78 + 456, 7081 = 1 + 15 + 120 + 795 + 6150, etc.
%o A375448 (PARI) {a(n) = my(A=[1], m, V); for(i=0, n, A = concat(A, 0); m=#A; V=Vec( subst(Ser(A)^m, x, x/m) );
%o A375448 A[m] = (m^2 - sum(k=1, #V, V[k]) )*m^(m-2) ); H=A; A[n+1]}
%o A375448 for(n=0, 20, print1(a(n), ", "))
%Y A375448 Cf. A375449, A375457.
%K A375448 nonn
%O A375448 0,2
%A A375448 _Paul D. Hanna_, Sep 12 2024