This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375451 #8 Sep 10 2024 12:57:19 %S A375451 1,1,3,21,264,5100,138595,5021209,233863116,13628372628,972514037307, %T A375451 83479400425677,8490972592164813,1010263560882000981, %U A375451 139051185192340895094,21926159523172792097194,3927328317712845680689864,793059545751159815604109176,179339266160209677707004583560 %N A375451 Expansion of g.f. A(x) satisfying 0 = Sum_{k=0..n} (-1)^k * binomial(n,k)^2 * ([x^k] A(x)^n) for n >= 1. %C A375451 Note that 0 = Sum_{k=0..n} (-1)^k * binomial(n,k) * ([x^k] G(x)^n) is satisfied by G(x) = 1/(1-x) for n >= 1. %H A375451 Paul D. Hanna, <a href="/A375451/b375451.txt">Table of n, a(n) for n = 0..200</a> %F A375451 a(n) ~ c * d^n * n!^2, where d = 0.691660276122579707675... = 4/BesselJZero(0,1)^2 = 4/A115368^2 and c = 3.8999463598998648630203... - _Vaclav Kotesovec_, Sep 10 2024 %e A375451 G.f.: A(x) = 1 + x + 3*x^2 + 21*x^3 + 264*x^4 + 5100*x^5 + 138595*x^6 + 5021209*x^7 + 233863116*x^8 + ... %e A375451 The table of coefficients of x^k in A(x)^n begins: %e A375451 n=1: [1, 1, 3, 21, 264, 5100, 138595, ...]; %e A375451 n=2: [1, 2, 7, 48, 579, 10854, 289415, ...]; %e A375451 n=3: [1, 3, 12, 82, 954, 17352, 453657, ...]; %e A375451 n=4: [1, 4, 18, 124, 1399, 24696, 632656, ...]; %e A375451 n=5: [1, 5, 25, 175, 1925, 33001, 827900, ...]; %e A375451 n=6: [1, 6, 33, 236, 2544, 42396, 1041046, ...]; %e A375451 ... %e A375451 from which we may illustrate the defining property given by %e A375451 0 = Sum_{k=0..n} (-1)^k * binomial(n,k)^2 * ([x^k] A(x)^n). %e A375451 Using the coefficients in the table above, we see that %e A375451 n=1: 0 = 1*1 - 1*1; %e A375451 n=2: 0 = 1*1 - 4*2 + 1*7; %e A375451 n=3: 0 = 1*1 - 9*3 + 9*12 - 1*82; %e A375451 n=4: 0 = 1*1 - 16*4 + 36*18 - 16*124 + 1*1399; %e A375451 n=5: 0 = 1*1 - 25*5 + 100*25 - 100*175 + 25*1925 - 1*33001; %e A375451 n=6: 0 = 1*1 - 36*6 + 225*33 - 400*236 + 225*2544 - 36*42396 + 1*1041046; %e A375451 ... %o A375451 (PARI) {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0); %o A375451 A[#A] = sum(k=0,#A-1, (-1)^(#A-k) * binomial(#A-1,k)^2 * polcoef(Ser(A)^(#A-1),k) )/(#A-1) ); A[n+1]} %o A375451 for(n=0,20,print1(a(n),", ")) %Y A375451 Cf. A008459, A115368. %K A375451 nonn %O A375451 0,3 %A A375451 _Paul D. Hanna_, Sep 10 2024