cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375457 Expansion of the g.f. A(x) with the property that the sum of the first n coefficients in A(x/n)^n equals n for n >= 1.

This page as a plain text file.
%I A375457 #32 Sep 13 2024 07:00:09
%S A375457 1,1,2,11,105,1375,22390,430954,9512029,235992263,6488607220,
%T A375457 195627162152,6414053158664,227170447034030,8643069830739980,
%U A375457 351580969750713450,15228097928340597681,699791999466718937425,34010355409897760336176,1743142054929355666550574,93975675621720312817066020
%N A375457 Expansion of the g.f. A(x) with the property that the sum of the first n coefficients in A(x/n)^n equals n for n >= 1.
%H A375457 Paul D. Hanna, <a href="/A375457/b375457.txt">Table of n, a(n) for n = 0..300</a>
%F A375457 G.f. A(x) satisfies [x^n] x*B'(x/n) / (1 - n*B(x/n)) = n for n >= 1, where B(x/A(x)) = x and B(x) is the g.f. of A375452.
%F A375457 a(n) ~ c * n^n, where c = 1.189395759976..., conjecture: c = (exp(1)-1)/exp(exp(-1)). - _Vaclav Kotesovec_, Sep 13 2024
%e A375457 G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 105*x^4 + 1375*x^5 + 22390*x^6 + 430954*x^7 + 9512029*x^8 + 235992263*x^9 + 6488607220*x^10 + ...
%e A375457 The defining property of g.f. A(x) is described below.
%e A375457 The table of coefficients in A(x)^n begins:
%e A375457   n=1: [1, 1,  2,  11,  105,  1375,  22390, ...];
%e A375457   n=2: [1, 2,  5,  26,  236,  3004,  48071, ...];
%e A375457   n=3: [1, 3,  9,  46,  399,  4932,  77498, ...];
%e A375457   n=4: [1, 4, 14,  72,  601,  7212, 111194, ...];
%e A375457   n=5: [1, 5, 20, 105,  850,  9906, 149760, ...];
%e A375457   n=6: [1, 6, 27, 146, 1155, 13086, 193886, ...];
%e A375457   n=7: [1, 7, 35, 196, 1526, 16835, 244363, ...];
%e A375457   ...
%e A375457 in which the sum of the first n coefficients in A(x/n)^n equals n, as illustrated by
%e A375457   1 = 1;
%e A375457   2 = 1 + 2/2;
%e A375457   3 = 1 + 3/3 + 9/3^2;
%e A375457   4 = 1 + 4/4 + 14/4^2 + 72/4^3;
%e A375457   5 = 1 + 5/5 + 20/5^2 + 105/5^3 + 850/5^4;
%e A375457   6 = 1 + 6/6 + 27/6^2 + 146/6^3 + 1155/6^4 + 13086/6^5;
%e A375457   7 = 1 + 7/7 + 35/7^2 + 196/7^3 + 1526/7^4 + 16835/7^5 + 244363/7^6;
%e A375457   ...
%e A375457 RELATED SERIES.
%e A375457 Let B(x) be the series reversion of x/A(x), B(x/A(x)) = x, then
%e A375457 B(x) = x + x^2 + 3*x^3 + 18*x^4 + 170*x^5 + 2181*x^6 + 34909*x^7 + 663152*x^8 + 14493060*x^9 + ... + A375452(n)*x^n + ...
%e A375457 Further, let C(x) = x*B'(x)/(1 - B(x)) = x + 3*x^2 + 13*x^3 + 91*x^4 + 981*x^5 + 14421*x^6 + 262963*x^7 + 5630843*x^8 + 137203969*x^9 + ...
%e A375457 then the coefficient of x^n in C(x) equals the sum of the initial n terms of A(x)^n for n >= 1; 1 = 1, 3 = 1 + 2, 13 = 1 + 3 + 9, 91 = 1 + 4 + 14 + 72, 981 = 1 + 5 + 20 + 105 + 850, etc.
%e A375457 The logarithmic derivative of g.f. A(x) begins
%e A375457 A(x)'/A(x) = 1 + 3*x + 28*x^2 + 375*x^3 + 6306*x^4 + 125286*x^5 + 2845200*x^6 + 72355095*x^7 + 2031897160*x^8 + 62371350558*x^9 + 2076430998588*x^10 + ...
%e A375457 Notice that the coefficient of x^n in A(x)'/A(x) appears to be divisible by (n+2) for n > 0.
%o A375457 (PARI) {a(n) = my(A=[1],m,V); for(i=0,n, A = concat(A,0); m=#A; V=Vec( subst(Ser(A)^m, x, x/m) );
%o A375457 A[m] = (m - sum(k=1,#V,V[k]) )*m^(m-2) ); A[n+1]}
%o A375457 for(n=0,20,print1(a(n),", "))
%Y A375457 Cf. A375452, A375448, A088358.
%K A375457 nonn
%O A375457 0,3
%A A375457 _Paul D. Hanna_, Sep 08 2024