This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375466 #11 Mar 30 2025 06:32:13 %S A375466 1,1,0,1,1,1,1,2,1,0,1,3,1,2,0,1,4,1,8,2,1,1,5,1,18,4,1,0,1,6,1,32,6, %T A375466 1,6,0,1,7,1,50,8,1,48,6,0,1,8,1,72,10,1,162,24,3,1,1,9,1,98,12,1,384, %U A375466 54,6,1,0,1,10,1,128,14,1,750,96,9,1,24,0 %N A375466 Array read by ascending antidiagonals of triangles read by rows: the coefficients of the polynomials n! * m^(n-k) * x^k * A094587(n, k), for m >= 0. %F A375466 T(n, m, k) = [x^k] n! * m^n * hypergeom([-n], [-n], x/m), for n > 0. %e A375466 Sequence of polynomials P(n, m) for n = 0, 1, 2, ...: %e A375466 [0] 1; %e A375466 [1] 1*m + x; %e A375466 [2] 2*m^2 + 2*m*x + x^2; %e A375466 [3] 6*m^3 + 6*m^2*x + 3*m*x^2 + x^3; %e A375466 [4] 24*m^4 + 24*m^3*x + 12*m^2*x^2 + 4*m*x^3 + x^4; %e A375466 [5] 120*m^5 + 120*m^4*x + 60*m^3*x^2 + 20*m^2*x^3 + 5*m*x^4 + x^5; %e A375466 [6] 720*m^6 + 720*m^5*x + 360*m^4*x^2 + 120*m^3*x^3 + 30*m^2*x^4 + 6*m*x^5 + x^6; %e A375466 ... %e A375466 Array of the coefficients of the polynomials for m = 0, 1, 2, ...: %e A375466 [0] 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, ... A023531 %e A375466 [1] 1, 1, 1, 2, 2, 1, 6, 6, 3, 1, 24, 24, 12, 4, 1, ... A094587 %e A375466 [2] 1, 2, 1, 8, 4, 1, 48, 24, 6, 1, 384, 192, 48, 8, 1, ... %e A375466 [3] 1, 3, 1, 18, 6, 1, 162, 54, 9, 1, 1944, 648, 108, 12, 1, ... %e A375466 [4] 1, 4, 1, 32, 8, 1, 384, 96, 12, 1, 6144, 1536, 192, 16, 1, ... %e A375466 [5] 1, 5, 1, 50, 10, 1, 750, 150, 15, 1, 15000, 3000, 300, 20, 1, ... %e A375466 [6] 1, 6, 1, 72, 12, 1, 1296, 216, 18, 1, 31104, 5184, 432, 24, 1, ... %e A375466 ... %e A375466 Seen as triangle: %e A375466 1; %e A375466 1, 0; %e A375466 1, 1, 1; %e A375466 1, 2, 1, 0; %e A375466 1, 3, 1, 2, 0; %e A375466 1, 4, 1, 8, 2, 1; %e A375466 1, 5, 1, 18, 4, 1, 0; %e A375466 1, 6, 1, 32, 6, 1, 6, 0; %e A375466 1, 7, 1, 50, 8, 1, 48, 6, 0; %e A375466 1, 8, 1, 72, 10, 1, 162, 24, 3, 1; %e A375466 1, 9, 1, 98, 12, 1, 384, 54, 6, 1, 0; %p A375466 # Computes the polynomials depending on the parameter m. %p A375466 P := (n, m) -> ifelse(m = 0, x^n, n! * m^n * hypergeom([-n], [-n], x/m)): %p A375466 seq(print(simplify(P(n, m))), n = 0..5); %p A375466 # Computes the array of coefficients: %p A375466 P := (n, k, m) -> (n!/k!) * m^(n-k) * x^k: %p A375466 Arow := (m, len) -> local n, k; %p A375466 seq(seq(coeff(P(n, k, m), x, k), k = 0..n), n = 0..len): %p A375466 seq(lprint(Arow(n, 4)), n = 0..6); %Y A375466 Cf. A094587, A023531. %K A375466 nonn,tabl %O A375466 0,8 %A A375466 _Peter Luschny_, Aug 17 2024