This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375467 #22 Sep 11 2024 12:31:52 %S A375467 0,0,1,0,0,1,0,0,1,2,0,0,1,3,4,0,0,1,5,8,9,0,0,1,7,15,19,20,0,0,1,11, %T A375467 29,42,47,48,0,0,1,15,53,89,108,114,115,0,0,1,22,98,191,252,278,285, %U A375467 286,0,0,1,30,177,402,582,676,710,718,719 %N A375467 Triangle read by rows: Number of unlabeled rooted trees with n vertices where the level of a vertex is bounded by k. %C A375467 The level of a vertex is the number of vertices in the path from the root to the vertex, the level of the root is 1. %F A375467 The rows accumulate the rows of A034781. %e A375467 Triangle starts: %e A375467 [0] [0] %e A375467 [1] [0, 1] %e A375467 [2] [0, 0, 1] %e A375467 [3] [0, 0, 1, 2] %e A375467 [4] [0, 0, 1, 3, 4] %e A375467 [5] [0, 0, 1, 5, 8, 9] %e A375467 [6] [0, 0, 1, 7, 15, 19, 20] %e A375467 [7] [0, 0, 1, 11, 29, 42, 47, 48] %e A375467 [8] [0, 0, 1, 15, 53, 89, 108, 114, 115] %e A375467 [9] [0, 0, 1, 22, 98, 191, 252, 278, 285, 286] %p A375467 div := n -> numtheory:-divisors(n): %p A375467 H := proc(n, k) option remember; local d; add(d * T(d, k), d = div(n)) end: %p A375467 T := proc(n, k) option remember; local i; if n = 1 then ifelse(k > 0, 1, 0) else add(T(i, k) * H(n - i, k - 1), i = 1..n - 1) / (n - 1) fi end: %p A375467 seq(print(seq(T(n, k), k = 0..n)), n = 0..9): # _Peter Luschny_, Sep 11 2024 %o A375467 (Python) %o A375467 from functools import cache %o A375467 @cache %o A375467 def Divisors(n: int) -> list[int]: %o A375467 return [d for d in range(n, 0, -1) if n % d == 0] %o A375467 @cache %o A375467 def H(n: int, k: int) -> int: %o A375467 return sum(d * T(d, k) for d in Divisors(n)) %o A375467 @cache %o A375467 def T(n: int, k: int) -> int: %o A375467 if k == 0: return 0 %o A375467 if n == 1: return int(k > 0) %o A375467 return sum(T(i, k) * H(n - i, k - 1) %o A375467 for i in range(1, n) ) // (n - 1) %o A375467 for n in range(10): print([T(n, k) for k in range(n + 1)]) %o A375467 # _Peter Luschny_, Sep 11 2024 %Y A375467 Cf. A000081 (main diagonal), A375468 (row sums), A034781. %K A375467 nonn,tabl %O A375467 0,10 %A A375467 _Peter Luschny_, Aug 29 2024