This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375481 #21 Aug 18 2024 20:28:49 %S A375481 1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,9,10,11,12,1,13,14,15,16,17,18,19,20, %T A375481 21,22,23,2,24,25,26,27,28,29,30,31,32,33,34,3,35,36,37,38,39,40,41, %U A375481 42,43,44,45,4,46,47,48,49,50,51,52,53,54,55,56,5,57,58 %N A375481 Starting numbers for the terms in A035333. %H A375481 Michael S. Branicky, <a href="/A375481/b375481.txt">Table of n, a(n) for n = 1..10000</a> %e A375481 a(19) = 12 since A035333(19) = 1213, the concatenation of 12 and 13. %e A375481 a(20) = 1 since A035333(20) = 1234, the concatenation of 1, 2, 3 and 4. %t A375481 ConsecutiveNumber[num_, numberOfNumbers_] := Module[{}, %t A375481 If[numberOfNumbers == 1, Return[num]]; %t A375481 FromDigits@(IntegerDigits[num]~Join~ %t A375481 IntegerDigits@ConsecutiveNumber[num + 1, numberOfNumbers - 1]) %t A375481 ] %t A375481 ConsecutiveNumberDigits[maxDigits_] := Module[{numList = {}, c, d}, %t A375481 Do[ %t A375481 numList = %t A375481 numList~Join~(Association[# -> ConsecutiveNumber[#, c]] & /@ %t A375481 Range[Power[10, d - 1], Power[10, d] - 1]);, %t A375481 {d, 1, Floor[maxDigits/2]}, {c, 2, Floor[maxDigits/d]} %t A375481 ]; %t A375481 SortBy[Select[numList, Values[#][[1]] < Power[10, maxDigits] &], %t A375481 Values[#] &] %t A375481 ] %t A375481 Keys[ConsecutiveNumberDigits[8]]//Flatten (* number in this line corresponds to the maximum number of digits of the concatenated terms *) %o A375481 (Python) %o A375481 import heapq %o A375481 from itertools import islice %o A375481 def agen(): # generator of terms %o A375481 c = 12 %o A375481 h = [(c, 1, 2)] %o A375481 nextcount = 3 %o A375481 while True: %o A375481 (v, s, l) = heapq.heappop(h) %o A375481 yield s %o A375481 if v >= c: %o A375481 c = int(str(c) + str(nextcount)) %o A375481 heapq.heappush(h, (c, 1, nextcount)) %o A375481 nextcount += 1 %o A375481 l += 1; v = int(str(v)[len(str(s)):] + str(l)); s += 1 %o A375481 heapq.heappush(h, (v, s, l)) %o A375481 print(list(islice(agen(), 70))) # _Michael S. Branicky_, Aug 18 2024 %Y A375481 For the terms generated by consecutive concatenations see A035333.For concatenations of various numbers of consecutive integers see A000027 (k=1), A127421 (k=2), A001703 (k=3), A279204 (k=4).For primes that are the concatenation of two or more consecutive integers see A052087. %K A375481 easy,nonn,base %O A375481 1,2 %A A375481 _Nicholas M. R. Frieler_, Aug 17 2024