A375483 Number of nonabelian groups of order m where m is the n-th squarefree number.
0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 3, 0, 0, 1, 0, 0, 1, 1, 0, 5, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 3, 0, 0, 3, 0, 0, 1, 0, 5, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 3, 0, 1, 1, 0, 0, 5, 1, 0, 5, 0, 1, 0, 1, 0, 0, 1, 3, 0, 0, 1, 0, 3, 0, 0
Offset: 1
Keywords
References
- O. Hölder. Die Gruppen mit quadratfreier Ordnungszahl. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse, pages 211-219 (1895).
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- I. Ganev, Groups of a Square-Free order, Rose-Hulman Undergraduate Mathematics Journal: Vol. 11 : Iss. 1 , Article 7 (2010).
Programs
-
Python
from math import isqrt, prod from itertools import combinations from sympy import mobius, primefactors, npartitions, factorint def A375483(n): def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) m, k = n, f(n) while m != k: m, k = k, f(k) a = set(primefactors(m)) return sum(prod((p**sum(1 for q in b if q%p==1)-1)//(p-1) for p in a-set(b)) for l in range(0,len(a)+1) for b in combinations(a,l))-prod(map(npartitions, factorint(m).values()))