This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375487 #9 Aug 18 2024 09:05:13 %S A375487 0,0,1,2,0,1,2,4,0,0,4,5,0,3,2,6,0,1,8,10,0,6,4,11,0,4,4,10,0,7,2,11, %T A375487 0,0,16,16,0,9,8,17,0,1,8,14,0,12,4,16,0,8,8,16,0,13,4,17,0,8,4,15,0, %U A375487 15,2,18,0,0,32,33,0,16,16,34,0,1,16,27,0,18,8 %N A375487 a(n) is the number of integers k between 0 and n such that n AND k is a prime number (where AND denotes the bitwise AND operator). %H A375487 Rémy Sigrist, <a href="/A375487/b375487.txt">Table of n, a(n) for n = 0..8192</a> %H A375487 Rémy Sigrist, <a href="/A375487/a375487.png">Scatterplot of (n, k) such that 0 <= k <= n <= 1024 and n AND k is prime</a> %F A375487 a(n) = 0 iff n = 0 or n belongs to A102210. %F A375487 a(2^k-1) = A000720(2^k-1) for any k > 0. %e A375487 The first terms, alongside the corresponding k's, are: %e A375487 n a(n) k's %e A375487 -- ---- ------------------ %e A375487 0 0 None %e A375487 1 0 None %e A375487 2 1 2 %e A375487 3 2 2, 3 %e A375487 4 0 None %e A375487 5 1 5 %e A375487 6 2 2, 3 %e A375487 7 4 2, 3, 5, 7 %e A375487 8 0 None %e A375487 9 0 None %e A375487 10 4 2, 3, 6, 7 %e A375487 11 5 2, 3, 6, 7, 11 %e A375487 12 0 None %e A375487 13 3 5, 7, 13 %e A375487 14 2 2, 3 %e A375487 15 6 2, 3, 5, 7, 11, 13 %o A375487 (PARI) a(n) = sum(k = 0, n, isprime(bitand(n, k))) %Y A375487 Cf. A000720, A102210, A117494, A375485 (XOR variant), A375486 (OR variant). %K A375487 nonn,base,easy %O A375487 0,4 %A A375487 _Rémy Sigrist_, Aug 17 2024