A375490 Odd numbers k > 1 such that gcd(3,k) = 1 and 3^((k-1)/2) == -(3/k) (mod k), where (3/k) is the Jacobi symbol (or Kronecker symbol); Euler pseudoprimes to base 3 (A262051) that are not Euler-Jacobi pseudoprimes to base 3 (A048950).
1541, 2465, 4961, 30857, 31697, 72041, 83333, 162401, 192713, 206981, 258017, 359369, 544541, 565001, 574397, 653333, 929633, 1018601, 1032533, 1133441, 1351601, 1373633, 1904033, 1953281, 2035661, 2797349, 2864501, 3264797, 3375041, 3554633, 3562361, 3636161
Offset: 1
Keywords
Examples
1541 is a term because (3/1541) = -1, and 3^((1541-1)/2) == 1 (mod 1541).
Links
- Jianing Song, Table of n, a(n) for n = 1..1000
- Mathematics Stack Exchange, There are no a in Z and odd k > 1 such that (a/k) = 1 and a^((k-1)/2) == -1 (mod k)
Crossrefs
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+----------+---------+
-----------------------------------+-------------------+----------+---------+
-----------------------------------+-------------------+----------+---------+
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+----------+---------+
(union of first two) | | | |
-----------------------------------+-------------------+----------+---------+
(union of all three) | | | |
Programs
-
PARI
isA375490(k) = (k>1) && gcd(k,6)==1 && Mod(3,k)^((k-1)/2)==-kronecker(3,k)
-
PARI
isA375490(k) = k%12==5 && Mod(3,k)^((k-1)/2)==1 \\ Jianing Song, Sep 07 2024
Comments