cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375491 Number of groups of order m where m is the n-th squarefree number.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1, 4, 1, 1, 2, 1, 1, 2, 2, 1, 6, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 4, 1, 1, 4, 1, 1, 2, 1, 6, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 2, 2, 1, 1, 6, 2, 1, 6, 1, 2, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 4, 1, 1
Offset: 1

Views

Author

Chai Wah Wu, Aug 17 2024

Keywords

Crossrefs

Programs

  • Mathematica
    FiniteGroupCount[Select[Range[150], SquareFreeQ]] (* Amiram Eldar, Jul 13 2025 *)
  • PARI
    apply( {A375491(n, m=A005117(n))=sumdiv(m, d, my(f=factor(d)[,1]); vecprod([ (p^vecsum([q%p==1| q<-f])-1)/(p-1) | p<-factor(m/d)[,1] ]))}, [1..66]) \\ M. F. Hasler, Aug 08 2025
  • Python
    from math import isqrt, prod
    from itertools import combinations
    from sympy import mobius, primefactors
    def A375491(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        a = set(primefactors(m))
        return sum(prod((p**sum(1 for q in b if q%p==1)-1)//(p-1) for p in a-set(b)) for l in range(0,len(a)+1) for b in combinations(a,l))
    

Formula

a(n) = A000001(A005117(n)).
a(n) = Sum_{d|m} Product_{p} (p^c(p)-1)/(p-1) where m is the n-th squarefree number and p is a prime factor of m/d and c(p) is the number of prime factors of d that are congruent to 1 modulo p (Hölder).