A375491 Number of groups of order m where m is the n-th squarefree number.
1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1, 4, 1, 1, 2, 1, 1, 2, 2, 1, 6, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 4, 1, 1, 4, 1, 1, 2, 1, 6, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 2, 2, 1, 1, 6, 2, 1, 6, 1, 2, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 4, 1, 1
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- Iordan Ganev, Groups of a Square-Free Order, Rose-Hulman Undergraduate Mathematics Journal, Vol. 11, Iss. 1 (2010), Article 7.
- Otto Hölder, Die Gruppen mit quadratfreier Ordnungszahl, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1895), pages 211-229.
Programs
-
Mathematica
FiniteGroupCount[Select[Range[150], SquareFreeQ]] (* Amiram Eldar, Jul 13 2025 *)
-
PARI
apply( {A375491(n, m=A005117(n))=sumdiv(m, d, my(f=factor(d)[,1]); vecprod([ (p^vecsum([q%p==1| q<-f])-1)/(p-1) | p<-factor(m/d)[,1] ]))}, [1..66]) \\ M. F. Hasler, Aug 08 2025
-
Python
from math import isqrt, prod from itertools import combinations from sympy import mobius, primefactors def A375491(n): def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) m, k = n, f(n) while m != k: m, k = k, f(k) a = set(primefactors(m)) return sum(prod((p**sum(1 for q in b if q%p==1)-1)//(p-1) for p in a-set(b)) for l in range(0,len(a)+1) for b in combinations(a,l))