cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375499 a(n) is the smallest number of straight lines needed to intersect all points (k, d(k)) for k = 1..n (where d is the sum-of-divisors function A000005).

This page as a plain text file.
%I A375499 #26 Oct 20 2024 23:35:55
%S A375499 1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,
%T A375499 6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,
%U A375499 8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11
%N A375499 a(n) is the smallest number of straight lines needed to intersect all points (k, d(k)) for k = 1..n (where d is the sum-of-divisors function A000005).
%H A375499 Max Alekseyev, <a href="/A375499/b375499.txt">Table of n, a(n) for n = 1..400</a>
%H A375499 Max Alekseyev, <a href="https://github.com/maxale/oeis/blob/main/a3738xx_lines_covering_points.sage">Sage program for lines covering points</a>, Github, Aug 19 2024
%H A375499 Rémy Sigrist, <a href="/A375499/a375499.gp.txt">PARI program</a>
%H A375499 N. J. A. Sloane, <a href="https://www.youtube.com/watch?v=3RAYoaKMckM">A Nasty Surprise in a Sequence and Other OEIS Stories</a>, Experimental Mathematics Seminar, Rutgers University, Oct 10 2024, Youtube video; <a href="https://sites.math.rutgers.edu/~zeilberg/expmath/sloane85BD.pdf">Slides</a> [Mentions this sequence]
%e A375499 The initial terms, together with an appropriate set of lines, are:
%e A375499   1 1 [1]
%e A375499   2 1 [x]
%e A375499   3 2 [2, x]
%e A375499   4 2 [2, (2/3)*x + 1/3]
%e A375499   5 2 [2, (2/3)*x + 1/3]
%e A375499   6 3 [2, 2*x - 8, (2/3)*x + 1/3]
%e A375499   7 3 [2, 2*x - 8, (2/3)*x + 1/3]
%e A375499   8 3 [2, 4, (2/3)*x + 1/3]
%e A375499   9 4 [2, 3, 4, x]
%e A375499   10 4 [2, 3, 4, x]
%e A375499   11 4 [2, 3, 4, x]
%e A375499   12 4 [2, 3, 4, (5/11)*x + 6/11]
%e A375499   13 4 [2, 3, 4, (5/11)*x + 6/11]
%e A375499   14 4 [2, 3, 4, (5/11)*x + 6/11]
%e A375499   15 4 [2, 3, 4, (5/11)*x + 6/11]
%e A375499   16 5 [2, 3, 4, 4*x - 42, (4/15)*x + 11/15]
%e A375499   17 5 [2, 3, 4, 4*x - 42, (4/15)*x + 11/15]
%e A375499   18 5 [2, 3, 4, 6, (4/15)*x + 11/15]
%o A375499 (PARI) \\ See Links section.
%Y A375499 Suggested by A373811 and A375420.
%Y A375499 Cf. A000005, A373810, A373813, A375515 (RUNS).
%K A375499 nonn
%O A375499 1,3
%A A375499 _Rémy Sigrist_ and _N. J. A. Sloane_, Aug 18 2024
%E A375499 Terms a(30) onward from _Max Alekseyev_, Aug 18 2024