This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375517 #22 Mar 21 2025 10:32:45 %S A375517 2,2,4,12,240,40200,1385211600,1469089808430082650, %T A375517 1705264091048404496800363077779646800, %U A375517 2355419752377504356995163180927294204575594409432081035253034399529376520 %N A375517 a(n) = A375516(n)/n. %H A375517 Alois P. Heinz, <a href="/A375517/b375517.txt">Table of n, a(n) for n = 1..14</a> %e A375517 The prime factors (without repetition) of the first ten terms are: %e A375517 {2}, %e A375517 {2}, %e A375517 {2}, %e A375517 {2, 3}, %e A375517 {2, 3, 5}, %e A375517 {2, 3, 5, 67}, %e A375517 {2, 3, 5, 67, 5743}, %e A375517 {2, 3, 5, 7, 67, 5743, 1212060151}, %e A375517 {2, 5, 7, 67, 137, 151, 5743, 10867, 1212060151, 5808829669}, %e A375517 {2, 3, 5, 7, 19, 47, 67, 71, 137, 151, 5743, 10867, 1212060151, 5808829669, 243254025696427, 99509446928973841} %p A375517 s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(n*b(n))) end: %p A375517 b:= proc(n) b(n):= 1+floor(1/((1-s(n-1))*n)) end: %p A375517 a:= n-> denom(s(n))/n: %p A375517 seq(a(n), n=1..10); # _Alois P. Heinz_, Oct 19 2024 %t A375517 s[n_] := s[n] = If[n == 0, 0, s[n - 1] + 1/(n*b[n])]; %t A375517 b[n_] := b[n] = 1 + Floor[1/((1 - s[n - 1])*n)]; %t A375517 a[n_] := Denominator[s[n]]/n; %t A375517 Table[a[n], {n, 1, 10}] (* _Jean-François Alcover_, Mar 21 2025, after _Alois P. Heinz_ *) %o A375517 (Python) %o A375517 from itertools import count, islice %o A375517 from math import gcd %o A375517 def A375517_gen(): # generator of terms %o A375517 p, q = 0, 1 %o A375517 for k in count(1): %o A375517 m = q//(k*(q-p))+1 %o A375517 p, q = p*k*m+q, k*m*q %o A375517 p //= (r:=gcd(p,q)) %o A375517 q //= r %o A375517 yield q//k %o A375517 A375517_list = list(islice(A375517_gen(),11)) # _Chai Wah Wu_, Aug 28 2024 %Y A375517 Cf. A374663, A374983, A375516. %K A375517 nonn %O A375517 1,1 %A A375517 _N. J. A. Sloane_, Aug 20 2024