This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375535 #8 Aug 28 2024 11:26:05 %S A375535 1,0,0,2,0,1,0,6,6,3,0,7,0,11,13,14,0,13,0,13,14,9,0,19,20,24,24,25,0, %T A375535 23,0,30,30,15,30,31,0,31,37,33,0,37,0,31,43,41,0,43,42,43,44,50,0,49, %U A375535 53,53,44,27,0,53,0,59,56,62,60,64,0,49,67,67,0,67,0,72,73,69,72,73 %N A375535 a(n) = n - A075860(n). %C A375535 If p is a prime number, then a(p)=0. %e A375535 For n=15, a(15) = 15-2 = 13. %p A375535 f := proc(n) %p A375535 option remember: %p A375535 if isprime(n) then %p A375535 n %p A375535 else %p A375535 procname(convert(numtheory:-factorset(n), `+`)) %p A375535 end if %p A375535 end proc: %p A375535 f(1) := 0: %p A375535 seq(n - f(n), n = 1..100); %o A375535 (Python) %o A375535 from sympy import primefactors %o A375535 def a(n, pn): %o A375535 if n == pn: %o A375535 return n %o A375535 else: %o A375535 return a(sum(primefactors(n)), n) %o A375535 print([i-a(i, None) for i in range(1, 100)]) %Y A375535 Cf. A075860. %K A375535 nonn %O A375535 1,4 %A A375535 _Rafik Khalfi_, Aug 18 2024