This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375536 #8 Aug 20 2024 09:14:33 %S A375536 0,1,1,2,1,1,0,3,2,1,0,2,0,1,1,4,0,2,0,2,1,1,0,3,2,1,3,2,0,1,0,5,1,1, %T A375536 1,2,0,1,1,3,0,1,0,2,2,1,0,4,0,2,1,2,0,3,1,3,1,1,0,2,0,1,2,6,1,1,0,2, %U A375536 1,1,0,3,0,1,2,2,0,1,0,4,4,1,0,2,1,1,1,3,0,2,0,2,1,1,1,5,0,1,2,2,0,1,0,3,1 %N A375536 The maximum exponent in the prime factorization of the largest 5-smooth divisor of n. %H A375536 Amiram Eldar, <a href="/A375536/b375536.txt">Table of n, a(n) for n = 1..10000</a> %H A375536 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>. %F A375536 a(n) = A051903(A355582(n)). %F A375536 a(n) = max(A007814(n), A007949(n), A112765(n)). %F A375536 a(n) = 0 if and only if n is a 7-rough number (A007775). %F A375536 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A375538(3)/A375539(3) = 51227/36540 = 1.401943076... %t A375536 a[n_] := Max[IntegerExponent[n, {2, 3, 5}]]; Array[a, 100] %o A375536 (PARI) a(n) = max(max(valuation(n, 2), valuation(n, 3)), valuation(n, 5)); %Y A375536 Cf. A007775, A051903, A244417 (3-smooth analog), A355582, A375537, A375538, A375539. %Y A375536 Cf. A007814, A007949, A112765. %K A375536 nonn,easy %O A375536 1,4 %A A375536 _Amiram Eldar_, Aug 19 2024